Skip to main content
Log in

Characterization of Meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis)

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

To characterize the innervation of the cynomolgus monkey (Macaca fascicularis) Meibomian (tarsal) glands, upper lids of six cynomolgus monkeys were investigated with electronmicroscopical and double-labeling immunocytochemical methods. Antibodies against calcitonin gene-related peptide (CGRP), dopamine-β-hydroxylase (DBH), neuropeptide Y (NPY), nitric oxide synthase (NOS), protein gene product 9.5 (PGP 9.5), substance P (SP), tyrosine hydroxylase (TH), and vasoactive intestinal peptide (VIP) were used. In addition, sections were processed for NADPH-diaphorase (NADPH-d) histochemistry. Staining for PGP 9.5 and electron microscopy showed that Meibomian gland acini were surrounded by a network of unmyelinated nerves and terminal varicose axons. The terminals contained small agranular (30–60 nm) and large granular vesicles (65–110 nm), and were observed in close contact with the basal lamina of the acini, but never internally to the basal lamina. Meibomian axons showed like-immunore-activity (LI) for the neuropeptides SP, CGRP, NPY, and VIP. In addition, the axons stained for TH, DBH, NOS, and NADPH-d. VIP-LI, NOS- and NADPH-d-positive axons appeared to be more numerous, TH- and DBH-positive axons more rare than others. Most SP-LI axons were double-labelled for CGRP-LI, some for VIP-LI or NPY-LI. In addition, some VIP-LI axons were double-labeled for NPY-LI. NPY/VIP-LI and NPY/SP-LI axons were only observed close to the Meibomian acini. Conversely, NPY-LI colocalized with TH-IR or DBH-IR predominated in perivascular nerves of Meibomian gland vasculature. The close association of varicose axons with the acini of Meibomian glands indicates that nervous signals modulate meibomian secretion. Meibomian gland nerve fibers in the cynomolgus monkey appear to utilize various neuropeptides, catecholamines and nitric oxide as transmitter substances, and seem to derive from the pterygopalatine, superior cervical and trigeminal ganglion respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björklund H, Hökfelt T, Goldstein M, Terenius L, Olson L (1985) Appearance of noradrenergic markers tyrosine hydroxylase and neuropeptide Y in cholinergic nerves of the iris following sympathectomy. J Neurosci 5:1633–1643

    Google Scholar 

  • Bron AJ, Benjamin L, Snibson GR (1991) Meibomian gland disease. Classification and grading of lid changes. Eye 5:395–411

    Google Scholar 

  • Bruun A, Ehinger B, Sundler F, Tornqvist K, Uddman R (1984) Neuropeptide Y immunoreactive neurons in the guinea-pig uvea and retina. Invest Ophthalmol Vis Sci 25:1113–1123

    Google Scholar 

  • Buschke A, Fränkel A (1905) Über die Funktion der Talgdrüsen und deren Beziehung zum Fettstoffwechsel. Berl Klin Wochenschr 24:318–322

    Google Scholar 

  • Butler JM, Ruskell GL, Cole DF, Unger WG, Zhang SQ, Blank MA, McGregor GP, Bloom SR (1984) Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. Exp Eye Res 39:523–532

    Google Scholar 

  • Cuello AC, Galfre G, Milstein C (1979) Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci USA 76:3532–3536

    Google Scholar 

  • Dartt DA, Baker AK, Vaillant C, Rose P (1984) Vasoactive intestinal peptide stimulation of protein secretion from rat lacrimal gland acini. Am J Physiol 247:G502-G509

    Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi PM, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Google Scholar 

  • Duhamel RC, Johnson DA (1985) Use of nonfat dry milk to block nonspecific nuclear and membrane staining by avidin conjugates. J Histochem Cytochem 33:711–714

    Google Scholar 

  • Edwards AV, Garrett JR (1993) Nitric oxide-related vasodilator responses to parasympathetic stimulation of the submandibular gland in the cat. J Physiol (Lond) 464:379–392

    Google Scholar 

  • Elsås T, Edvinsson L, Sundler F, Uddman R (1994) Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp Eye Res 58:117–126

    Google Scholar 

  • Fan Q, Smith PG (1993) Decreased vasoactive intestinal polypeptide-immunoreactivity of parasympathetic neurons and target innervation following long-term sympathectomy. Regul Pept 48:337–343

    Google Scholar 

  • Flügel C, Tamm ER, Mayer B, Lütjen-Drecoll E (1994) Species differences in choroidal vasodilative innervation: Evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 35:592–599

    Google Scholar 

  • Gibbins IL (1990) Target related patterns of co-existence of neuropeptide Y, vasoactive intestinal peptide, enkephalin and substance P in cranial parasympathetic neurons innervating the facial skin and exocrine glands of guinea pigs. Neuroscience 38:541–560

    Google Scholar 

  • Gibbins IL, Morris JL (1987) Co-existence of neuropeptides in sympathetic, cranial autonomic and sensory neurons innervating the iris of the guinea-pig. J Auton Nerv Syst 21:67–82

    Google Scholar 

  • Gordon-Weeks PR (1988) The ultrastructure of noradrenergic and cholinergic neurons in the autonomic nervous system. In: Björklund A, Hökfelt T, Owman C (eds) Handbook of chemical neuroanatomy, vol 6. The peripheral nervous system. Elsevier, Amsterdam, pp 117–142

    Google Scholar 

  • Grunditz T, Ekman R, Hakanson R, Rerup C, Sundler F, Uddman R (1986) Calcitonin gene-related peptide in thyroid nerve fibers and C-cells: effect on thyroid hormone secretion and response to hypercalcemia. Endocrinology 119:2313–2324

    Google Scholar 

  • Gulbenkian S, Wharton J, Polak JM (1987) The visualization of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5). J Auton Nerv Syst 18:235–247

    Google Scholar 

  • Gutgesell VJ, Stern GA, Hood CI (1982) Histopathology of Meibomian gland dysfunction. Am J Ophthalmol 94:383–387

    Google Scholar 

  • Hardebo JE, Suzuki N, Ekblad E, Owman C (1992) Vasoactive intestinal polypeptide and acetylcholine coexist with neuropeptide Y, dopamine-β-hydroxylase, substance P or calcitonin gene-related peptide in neuronal subpopulations in cranial parasympathetic ganglia of rat. Cell Tissue Res 267:291–300

    Google Scholar 

  • Hartschuh W, Reinecke M, Weihe E, Yanaihara N (1984) VIP-immunoreactivity in the skin of various mammals: immunohistochemical, radioimmunological and experimental evidence for a dual localization in cutaneous nerves and Merkel cells. Peptides 5:239–245

    Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Google Scholar 

  • Hope BC, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Google Scholar 

  • Ito S, Karnovsky MJ (1968) Formaldehyde-glutaraldehyde fixatives containing trinitro compounds. J Cell Biol 39:168A-169A

    Google Scholar 

  • Jester JV, Nicolaides N, Smith RE (1981) Meibomian gland studies: histologic and ultrastructural investigations. Invest Ophthalmol Vis Sci 20:537–547

    Google Scholar 

  • Klatt P, Heinzel B, John M, Kastner M, Böhme E, Mayer B (1992) Ca2+/Calmodulin-dependent cytochrome-c reductase activity of brain nitric oxide synthase. J Biol Chem 267:11374–11378

    Google Scholar 

  • Kummer W, Mayer B (1993) Nitric oxide synthase in guinea-pig skin. Ann Anat [Suppl] 175:224

    Google Scholar 

  • Kuwayama Y, Stone RA (1987) Distinct substance P and calcitonin gene-related peptide immunoreactive nerves in the guinea pig eye. Invest Ophthalmol Vis Sci 28:1947–1954

    Google Scholar 

  • Kuwayama T, Terenghi G, Polak JM, Trojanowski JQ, Stone RA (1987) A quantitative correlation of substance P-, calcitonin gene-related peptide- and cholecystokinin-like immunoreactivity with retrogradely labeled trigeminal ganglion cells innervating the eye. Brain Res 405:220–226

    Google Scholar 

  • Larsen PJ, Sheikh SP, Mikkelsen JD (1992) Osmotic regulation of neuropeptide Y and its binding sites in the magnocellular hypothalamo-neurohypophysial pathway. Brain Res 573:181–189

    Google Scholar 

  • Leblanc GG, Trimmer BA, Landis SC (1987) Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase. Proc Natl Acad Sci USA 84:3511–3515

    Google Scholar 

  • Lee Y, Kawai Y, Shiosaka S, Takami K, Hillyard CJ, Girgis S, MacIntyre I, Emson PC, Tohyama M (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330:194–196

    Google Scholar 

  • Leeson TS (1963) Tarsal (Meibomian) glands of the rat. Br J Ophthalmol 47:222–231

    Google Scholar 

  • Luhtala J, Uusitalo H (1991) The distribution and origin of substance P immunoreactive nerve fibres in the rat conjunctiva. Exp Eye Res 53:641–646

    Google Scholar 

  • Luhtala J, Palkama A, Uusitalo H (1991) Calcitonin gene-related peptide immunoreactive nerve fibers in the rat conjunctiva. Invest Ophthalmol Vis Sci 32:640–645

    Google Scholar 

  • Lundberg JM, Änggärd A, Fahrenkrug J, Hökfeld T, Mutt V (1983) Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilatation and secretion. Proc Natl Acad Sci USA 77:1651–1655

    Google Scholar 

  • Macintosh SR (1974) The innervation of the conjunctiva in monkeys. An electron microscopic and nerve degeneration study. Graefes Arch Klin Exp Ophthalmol 192:105–116

    Google Scholar 

  • Mathers WD (1993) Ocular evaporation in meibomian gland dysfunction and dry eye. Ophthalmology 100:347–351

    Google Scholar 

  • Mathers WD, Shields WJ, Sachdev MS, Petroll WM, Jester JV (1991) Meibomian gland dysfunction in chronic blepharitis. Cornea 10:277–285

    Google Scholar 

  • Matsumoto Y, Tanabe T, Ueda S, Kawata M (1992) Immunohistochemical and enzymehistochemical studies of peptidergic, aminergic and cholinergic innervation of the lacrimal gland of the monkey (Macaca fuscata). J Auton Nerv Syst 37:207–214

    Google Scholar 

  • Meneray M, Beuermann RW, Thompson HW (1994) Structural and functional effects of trigeminal denervation of the rabbit lacrimal gland. In: JERMOV (Joint European Research Meetings in Ophthalmology and Vision) programme and abstract book. Chairman Agency, Montpellier, pp 43

    Google Scholar 

  • Miraglia T, Gomes NF (1969) The Meibomian glands of the marmoset (Callithrix jacchus). Acta Anat (Basel) 74:104–113

    Google Scholar 

  • Mishima S, Maurice DM (1961) The oily layer of the tear film and evaporation from the comeal surface. Exp Eye Res 1:39–45

    Google Scholar 

  • Modin A (1994) Non-adrenergic, non-cholinergic vascular control with reference to neuropeptide Y, vasoactive intestinal polypeptide and nitric oxide. Acta Physiol Scand Suppl 622:1–74

    Google Scholar 

  • Montagna W, Ellis RA (1959) Cholinergic innervation of the Meibomian gland. Anat Rec 135:121–128

    Google Scholar 

  • Perra MT, Lantini MS, Serra A, Cossu M, De Martini G, Sirigu P (1990) Human Meibomian glands: a histochemical study for androgen metabolic enzymes. Invest Ophthalmol Vis Sci 31:771–775

    Google Scholar 

  • Polak JM, Bloom SR (1987) Regulatory peptides. Introduction. Experientia 43:723–850

    Google Scholar 

  • Prins M, Van der Werf F, Baijet B, Otto JA (1993) Calcitonin gene-related peptide and substance P immunoreactivity in the monkey trigeminal ganglion, an electron microscopic study. Brain Res 629:315–318

    Google Scholar 

  • Quartu M, Diaz G, Floris A, Lai ML, Priestley JV, Del Fiacco M (1992) Calcitonin gene-related peptide in the human trigeminal sensory system at developmental and adult life stages: immunohistochemistry, neuronal morphometry and coexistence with substance P. J Chem Neuroanat 5:143–157

    Google Scholar 

  • Richardson KC, Jarret L, Finke H (1960) Embedding in epoxy reins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    Google Scholar 

  • Rohen JW, Lütjen-Drecoll E (1992) Functional morphology of the conjunctiva. In: Lemp MA, Marquardt R (eds) The dry eye. Springer, Berlin Heidelberg New York, pp 35–63

    Google Scholar 

  • Ruskell GL (1969) Changes in nerve terminals and acini of the lacrimal gland and changes in secretion induced by autonomic denervation. Z Zellforsch Mikrosk Anat 94:261–281

    Google Scholar 

  • Sanders KM, Ward SM (1992) Nitric oxide as a mediator of non-adrenergic noncholinergic neurotransmission. Am J Physiol 262:G379-G392

    Google Scholar 

  • Schachter M, Matthews B, Bhoola KD (1992) Evidence that nitric oxide or a related substance is a neurovasodilator in the submandibular gland of the cat. Agents Actions Suppl 38:366–370

    Google Scholar 

  • Schuster S, Thody AJ (1974) The control and measurement of sebum secretion. J Invest Dermatol 62:172–190

    Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides 6:747–754

    Google Scholar 

  • Smith PG, Reddy H (1990) Reorganization of cranial sympathetic pathways following neonatal ganglionectomy in the rat. J Comp Neurol 301:490–500

    Google Scholar 

  • Snyder SH (1992) Nitric oxide and neurons. Curr Opin Neurobiol 2:323–327

    Google Scholar 

  • Stefanini M, Martino C de, Zamboni C (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Google Scholar 

  • Stephens LC, Schultheiss TE, Vargas KJ, Cromeens DM, Gray KN, Ang KK (1989) Glands of the eyelids of rhesus monkeys (Macaca mulatta). J Med Primatol 18:383–396

    Google Scholar 

  • Stone RA, Kuwayama Y (1989) The nervous system and intraocular pressure. In: Ritch R, Shields MB, Krupin T (eds) The glaucomas. Mosby, St.Louis, pp 257–279

    Google Scholar 

  • Stone RA, Kuwayama Y, Laties AM (1987) Regulatory peptides in the eye. Experientia 43:791–800

    Google Scholar 

  • Tamm ER, Flügel-Koch C, Mayer B, Lütjen-Drecoll E (1995) Nerve cells in the human ciliary muslce. Ultrastructural and immunocytochemical characterization. Invest Ophthalmol Vis Sci 36:414–426

    Google Scholar 

  • Terenghi G, Polak JM, Allen JM, Zhang SQ, Unger WG, Bloom SR (1983) Neuropeptide Y-immunoreactive nerves in the uvea of guinea pig and rat. Neurosci Lett 42:33–38

    Google Scholar 

  • Tiffany JM (1995) Physiological functions of the Meibomian glands. In: Osborne NN, Chader G (eds) Progress in retinal and eye research. Elsevier, Amsterdam New York, pp 47–74

    Google Scholar 

  • Tracey WR, Nakane M, Pollock JS, Förstermann U (1993) Nitric oxide synthases in neuronal cells, macrophages and endothelium are NADPH diaphorases, but represent only a fraction of total cellular NADPH diaphorase activity. Biochem Biophys Res Commun 195:1035–1040

    Google Scholar 

  • Uddman R, Alumets J, Ehinger B, Hakanson R, Loren I, Sundler F (1980) Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Invest Ophthalmol Vis Sci 19:878–885

    Google Scholar 

  • Unger WG (1989) Mediation of the ocular response to injury and irriation: peptides versus prostaglandins. In: Bito LZ, Stjernschantz J (eds) The ocular effects of prostaglandins and other eicosanoids (Proceedings in clinical and biological research, vol 312). Liss, New York, pp 293–328

    Google Scholar 

  • Van der Werf F (1993) Innervation of the lacrimal gland in the cynomolgus monkey. A retrograde tracing and immunohistochemical study. In: van der Werf F (ed) Autonomic and sensory innervation of some orbital structures in the primate. Thesis, University of Amsterdam, Amsterdam, pp 51–70

    Google Scholar 

  • Van der Werf F, Baljet B, Prins M, Timmerman A, Otto JA (1993) Innervation of the superior tarsal (Müller's) muscle in the cynomolgus monkey: a retrograde tracing study. Invest Ophthalmol Vis Sci 34:2333–2340

    Google Scholar 

  • Varndell IM, Polak JM (1988) The ultrastructure of peptide-containing neurons. In: Björklund A, Hökfelt T, Owman C (eds) Handbook of chemical neuroanatomy, vol 6. The peripheral nervous system. Elsevier, Amsterdam, pp 143–159

    Google Scholar 

  • Wilkinson KD, Lee K, Deshapande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673

    Google Scholar 

  • Wolff E (1946) The muco-cutaneous junction of the lid-margin and the distribution of the tear fluid. Trans Ophthalmol Soc UK 66:291–308

    Google Scholar 

  • Yamamoto R, Bredt DS, Snyder SH, Stone RA (1993) The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54:189–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirch, W., Horneber, M. & Tamm, E.R. Characterization of Meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis). Anat Embryol 193, 365–375 (1996). https://doi.org/10.1007/BF00186693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186693

Key words

Navigation