Skip to main content
Log in

A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica—Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alefounder PR, Perham RN (1989) Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol 3:723–732

    Google Scholar 

  • Arese P, Cappuccinelli P (1974) Glycolysis and pentose phosphate cycle in Trichomonas vaginalis: Enzyme activity pattern and the constant proportion quintet. Int J Biochem 5: 859–865

    Google Scholar 

  • Bakker-Grunwald T, Wöstmann C (1993) Entamoeba histolytica as a model for the primitive eukaryotic cell. Parasitol Today 9:27–31

    Google Scholar 

  • Baroin A, Perasso R, Qu L-H, Brugerolle G, Bachellerie J-P, Adoutte A (1988) Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85:3474–3478

    Google Scholar 

  • Biesecker G, Ieuan Harris J, Thierry JC, Walker JE, Wonacott AJ (1977) Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature 266:328–333

    Google Scholar 

  • Branlant G, Branlant C (1985) Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 150:61–66

    Google Scholar 

  • Brinkmann H, Martinez P, Martin W, Quigley F, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde 3-phosphate dehydrogenase from maize. J Mol Evol 26:320–328

    Google Scholar 

  • Cavalier-Smith T (1991) Archamoebae: the ancestral eukaryotes? BioSystems 25:25–38

    Google Scholar 

  • Chen J-H, Gibson JL, McCue LA, Tabita FR (1991) Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II carbon dioxide fixation operon of Rhodobacter sphaeroides. J Biol Chem 266:20447–20452

    Google Scholar 

  • Conway T, Sewell GW, Ingram LO (1987) Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region. J Bacteriol 169:5653–5662

    Google Scholar 

  • Corbier C, Clermont S, Billard P, Skarzynski C, Branlant C, Wonacott A, Branlant G (1990) Probing the coenzyme-specificity of glyceraldehyde-3-phosphate dehydrogenases by site-directed mutagenesis. Biochemistry 29:7101–7106

    Google Scholar 

  • Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    CAS  Google Scholar 

  • Doolittle RF, Feng D-F (1990) Nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol 183:659–669

    Google Scholar 

  • Doolittle RF, Feng D-F, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388

    Google Scholar 

  • Eikmanns BJ (1992) Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol 174:6076–6086

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    CAS  PubMed  Google Scholar 

  • Fothergill-Gilmore LA, Michels PAM (1993) Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235

    Google Scholar 

  • Goudot-Crozel V, Caillol D, Djabali M, Dessein AJ (1989) The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde-3P-dehydrogenase. J Exp Med 170:2065–2080

    Google Scholar 

  • Harris JI, Perham RN (1968) Glyceraldehyde 3-phosphate dehydrogenase from pig muscle. Nature 219:1025–1028

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early branchings in the evolution of eukaryotes: Ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36:380–388

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Adachi J, Hasegawa M (1992) Phylogenetic place of Giardia lamblia, a protozoan that lacks mitochondria. Endocyt Cell Res 9:59–69

    Google Scholar 

  • Hecht RM, Garza A, Lee YH, Miller MD, Pisegna MA (1989) Nucleotide sequence of glyceraldehyde-3-phosphate dehydrogenase gene from Thermus aquaticus YT1. Nucleic Acids Res 17:10123

    Google Scholar 

  • Hensel R, Zwickl P, Fabry S, Lang J, Palm P (1989) Sequence comparison of glyceraldehyde-3-phosphate dehydrogenases from the three urkingdoms: evolutionary implication. Can J Microbiol 35:81–85

    Google Scholar 

  • Honigberg BM, Brugerolle G (1989) Structure. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 5–35

    Google Scholar 

  • Huang XY, Barrios LA, Vonkhorporn P, Honda S, Albertson DG, Hecht RM (1989) Genomic organization of the glyceraldehyde-3-phosphate dehydrogenase gene family of Caenorhabditis elegans. J Mol Biol 206:411–424

    Google Scholar 

  • Jarroll EL, Manning P, Berrada A, Hare D, Lindmark DG (1989) Biochemistry and metabolism of Giardia lamblia. J Protozool 36:190–197

    Google Scholar 

  • Kato M, Sakai K, Endo A (1992) Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim Biophys Acta 1120:113–116

    Google Scholar 

  • Kendall G, Wilderspin AF, Ashall F, Miles MA, Kelly JM (1990) Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase does not conform to the ‘hotspot’ topogenic signal model. EMBO J 9:2751–2758

    Google Scholar 

  • Lambeir A-M, Loiseau AM, Kuntz DA, Vellieux FM, Michels PAM, Opperdoes FR (1991) The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. Eur J Biochem 198:429–435

    Google Scholar 

  • Liaud M-F, Zhang DX, Cerff R (1990) Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate genes to the nucleus. Proc Natl Acad Sci USA 87:8918–8922

    Google Scholar 

  • Mack SR, Müller M (1980) End products of carbohydrate metabolism in Trichomonas vaginalis. Comp Biochem Physiol 67B:213–216

    Google Scholar 

  • Martin W, Brinkmann H, Savona C, Cerff R (1993) Eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes: Evidence for the chimaeric nature of nuclear genomes. Proc Natl Acad Sci USA (in press)

  • Martin W, Cerff R (1986) Prokaryotic features of a nucleuscoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159:323–331

    Google Scholar 

  • Martin W, Gierl A, Saedler H (1989) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48

    Google Scholar 

  • Michels PAM, Marchand M, Kohl L, Allert S, Wierenga RK, Opperdoes FR (1991) The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem 198:421–428

    Google Scholar 

  • Michels PAM, Opperdoes FR (1991) The evolutionary origin of glycosomes. Parasitol Today 7:105–109

    Google Scholar 

  • Michels PAM, Opperdoes FR, Hannaert V, Wiemer EAC, Allert S, Chevalier N (1992) Phylogentic analysis based on glycolytic enzymes. Belg J Bot 125:164–173

    Google Scholar 

  • Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossmann MG (1975) Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162

    Google Scholar 

  • Müller M (1973) Biochemical cytology of trichomonad flagellates. I. Subcellular localization of hydrolases, dehydrogenases, and catalase in Tritrichomonas foetus. J Cell Biol 57:453–474

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Ann Rev Microbiol 42:465–488

    Google Scholar 

  • Müller M (1989) Biochemistry of Trichomonas vaginalis. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer, New York, pp 53–85

    Google Scholar 

  • Müller M (1992) Energy metabolis of ancestral eukaryotes: a hypothesis based on the biochemistry of amitochondrate parasitic protists. BioSystems 28:33–40

    Google Scholar 

  • Oster T (1989) Les glycéraldéhyde-3-phosphate déshydrogèna-ses de deux bactéries: Clostridium pasteurianum et Bacillus stearothermophilus. Séquence de leur gène et expression chez Escherichia coli. Étude phylogénétique de la glycéral-déhyde-3-phosphate déshydrogènase. PhD Thesis. Université de Nancy I, Nancy

    Google Scholar 

  • Reeves RE (1984) Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142

    Google Scholar 

  • Schlaepfer BS, Portmann W, Branlant C, Branlant G, Zuber H (1990) Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase from Bacillus megaterium. Nucl Acids Res 18:6422

    Google Scholar 

  • Searle SMJ, Müller M (1991) Inorganic pyrophosphatase of Trichomonas vaginalis. Mol Biochem Parasitol 44:91–96

    Google Scholar 

  • Shih M-C, Heinrich PC, Goodman HM (1991) Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. Gene 104:133–138 [correction (1992) Gene 119:317–319]

    Google Scholar 

  • Shuster JR (1990) Kluyveromyces lactis glyceraldehyde-3-hosphate dehydrogenase and alcohol dehydrogenase-1 genes are linked and divergently transcribed. Nucleic Acids Res 18:4271

    Google Scholar 

  • Smith MW, Feng D-F, Doolittle R (1992) Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci 17:489–493

    Google Scholar 

  • Smith TL, Leong SA (1990) Isolation and characterization of a Ustilago maydis glyceraldehyde-3-phosphate dehydrogenase-encoding gene. Gene 93:111–117

    Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463

    Google Scholar 

  • Steinbüchel A, Müller M (1986) Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 20:45–55

    Google Scholar 

  • Taylor MB, Berghausen H, Heyworth P, Messenger N, Rees LJ, Gutteridge WE (1980) Subcellular localization of some glycolytic enzymes in parasitic flagellated protozoa. Int J Biochem 11:117–120

    Google Scholar 

  • Tesfay HS, Amelunxen RE, Goldberg ID (1989) Nucleotide sequences of genes encoding heat-stable and heat-labile glyceraldehyde-3-phosphate dehydrogenases; amino acid sequence and protein thermostability. Gene 82:237–248

    Google Scholar 

  • van Keulen H, Gutell RR, Gates MA, Campbell SR, Erlandsen SL, Jarroll EL, Kulda J, Meyer EA (1993) Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp. FASEB J 7:223–231

    Google Scholar 

  • Velick SF (1955) Glyceraldehyde-3-phosphate dehydrogenase from muscle. Methods Enzymol 1:401–406

    Google Scholar 

  • Viaene A, Dhaese P (1989) Sequence of the Bacillus subtilis glyceraldehyde-3-phosphate dehydrogenase gene. Nucleic Acids Res 17:1251

    Google Scholar 

  • Viscogliosi E, Philippe H, Baroin A, Perasso R, Brugerolle G (1993) Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. J Eukar Microbiol 40 (in press)

  • Wang AL, Wang CC (1985) Isolation and characterization of DNA from Tritrichomonas foetus and Trichomonas vaginalis. Mol Biochem Parasitol 14:323–335

    Google Scholar 

  • Wirtschafter S, Jahn TL (1956) The metabolism of Trichomonas vaginalis: The glycolytic pathway. J Protozool 3:83–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markoš, A., Miretsky, A. & Müller, M. A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis . J Mol Evol 37, 631–643 (1993). https://doi.org/10.1007/BF00182749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182749

Key words

Navigation