Skip to main content
Log in

Abstract

Mathematics, as a subject dealing with abstract concepts, poses a special challenge for educators. In students' experience, the subject is often associated with (potentially) unflattering adjectives — “austere”, “remote”, “depersonalized”, and so forth. This paper describes a computer program named HyperGami whose purpose is to alleviate this harsh portrait of the mathematical enterprise. HyperGami is a system for the construction of decorated paper polyhedral. shapes; these shapes may be combined into larger polyhedral sculptures, which we have dubbed “orihedra.” In this paper, we illustrate the methods by which orihedra may be created from HyperGami solids (using the construction of a particular sculpture as an example); we describe our experiences with elementary- and middle-school students using HyperGami to create orihedra; we discuss the current limitations of HyperGami as a sculptural medium; and we outline potential directions for future research and software development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, H. and diSessa, A. (1980). Turtle Geometry. Cambridge, MA: MIT Press.

    Google Scholar 

  • Abelson, H. and Sussman, G. J. with Sussman, J. (1985). Structure and Interpretation of Computer Programs. Cambridge, MA: MIT Press.

    Google Scholar 

  • Banchoff, T. (1990). Dimension. In L. A. Steen (Ed.), On the Shoulders of Giants (pp. 11–59). Washington, D.C.: National Academy Press.

    Google Scholar 

  • BioCrystal, Inc. Zometool. Boulder, CO.

  • Brinkmann, E. (1966). Programed instruction as a technique for improving spatial visualization. Journal of Applied Psychology 50(2): 179–184.

    Article  Google Scholar 

  • Coxeter, H. S. M. (1973). Regular Polytopes. New York: Dover.

    Google Scholar 

  • Croft, H., Falconer, K. and Guy, R. (1991). Unsolved Problems in Geometry. New York: Springer-Verlag.

    Book  Google Scholar 

  • Cundy, H. M. and Rollett, A. P. (1951). Mathematical Models. London: Oxford University Press.

    Google Scholar 

  • Eisenberg, M. (1991). Programmable applications: Interpreter meets interface. MIT AI Lab Memo 1325. Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Eisenberg, M. (1996). The thin glass line: Designing interfaces to algorithms. Proceedings of CHI '96, Vancouver, BC, pp. 181–188.

  • Eisenberg, M. and DiBiase, J. (1996). Mathematical manipulatives as designed artifacts: The cognitive, affective, and technological dimensions. Proceedings of the International Conference on the Learning Sciences, pp. 44–51.

  • Eisenberg, M. and Fischer, G. (1994). Programmable design environments. Proceedings of CHI'94, Boston, pp. 431–437.

  • Eisenberg, M. and Nishioka, A. (1997). Creating polyhedral models by computer. To appear in Journal of Computers in Mathematics and Science Teaching.

  • Eisenberg, M. and Nishioka, A. (1994). HyperGami: A computational system for creating decorated paper constructions. To appear in Proceedings of Second International Meeting of Origami Science and Scientific Origami. Otsu, Shiga, Japan.

  • Hayes, B. (1995). Pleasures of plication. American Scientist 83: 504–509.

    Google Scholar 

  • Heath, Sir Thomas L. (1925). The Thirteen Books of Euclid's Elements. New York: Dover. (Reprinted, 1956.)

    Google Scholar 

  • Hilbert, D. and Cohn-Vossen, S. (1952). Geometry and the Imagination. New York: Chelsea.

    Google Scholar 

  • Hilton, P. and Pedersen, J. (1994). Build Your Own Polyhedra. Menlo Park, CA: Addison-Wesley.

    Google Scholar 

  • Holden, A. (1971). Shapes, Space, and Symmetry. New York: Dover.

    Google Scholar 

  • Mitchelmore, M. (1980). Three-dimensional geometrical drawing in three cultures. Educational Studies in Mathematics 11: 205–216.

    Article  Google Scholar 

  • Mühlhausen, E. (1993) Riemann surface — crocheted in four colors. Mathematical Intelligencer 15(3): 49–53.

    Article  Google Scholar 

  • Nardi, B. (1993). A Small Matter of Programming. Cambridge, MA: MIT Press.

    Google Scholar 

  • National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Papert, S. (1991). Situating Constructionism. In I. Harel and S. Papert (Eds.), Constructionism (pp. 1–11). Norwood, NJ: Ablex.

    Google Scholar 

  • Pearce, P. and Pearce, S. (1980). Experiments in Form. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Piaget, J. and Inhelder, B. (1948). The Child's Conception of Space. New York: W.W. Norton & Company.

    Google Scholar 

  • Resnick, M. (1993). Behavior construction kits. Communications of the ACM 36(7): 64–71.

    Article  Google Scholar 

  • Rudolph, J. S. (1983). Make Your Own Working Paper Clock. New York: Harper and Row.

    Google Scholar 

  • Senechal, M. and Fleck, G. (1988). Polyhedra in the curriculum. In M. Senechal and G. Fleck (Eds.), Shaping Space: A Polyhedral Approach (pp. 262–265). Boston:Birkhäuser

    Google Scholar 

  • Spooner, P. (1986). Spooner's Moving Animals. New York: Harry N. Abrams.

    Google Scholar 

  • Suzuki, E. (1987). Omoshiro ku kan e no sho tai. (Unique Creativity Utilizing Polyhedra.) In Japanese. Tokyo: Teruko Nakagawa.

    Google Scholar 

  • Trudeau, R. J. (1987). The Non-Euclidean Revolution. Boston: Birkhäuser.

    Google Scholar 

  • Welchman-Tischler, R. (1992). The Mathematical Toolbox. White Plains, NY: Cuisenaire.

    Google Scholar 

  • Wenninger, M. (1971). Polyhedron Models. New York: Cambridge University Press.

    Google Scholar 

  • Williams, R. (1979). The Geometrical Foundation of Natural Structure. New York: Dover.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberg, M., Nishioka, A. Orihedra: Mathematical sculptures in paper. Int J Comput Math Learning 1, 225–261 (1997). https://doi.org/10.1007/BF00182617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182617

Keywords

Navigation