Skip to main content
Log in

Catchability: a key parameter for fish stock assessment

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Summary

Catchability is a concept in fishery biology which reflects the efficiency of a particular fishery. Its quantitative magnitude is expressed by the catchability coefficient, which relates the biomass abundance to the capture or fishing mortality. This paper is a comprehensive review of catchability including the development of our knowledge, interpretation and estimation.

Catchability patterns indicate that the catchability coefficient has been used in two main lines: (a) increased efficiency of fishing effort and (b) its relation to population fishery processes for assessment and management purposes. It involves various aspects of the fishery, such as individual and population biology, characteristics of the fishing gear, amount of fishing, fishing strategies, and environmental fluctuation, among others.

The concept is proposed of an integrated model of the catchability coefficient, which incorporates various of the aspects mentioned above. It is illustrated with two examples of its application: the red grouper (Epinephelus morio) fishery from the Campeche Bank, Gulf of Mexico, and the sardine (Sardinops caeruleus) fishery from the Gulf of California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelsen, K.K. and Olsen, S. (1987) Impact of fish density and effort level on catching efficiency of fishing gear. Fish. Res. 5, 271–8.

    Google Scholar 

  • Arreguín-Sánchez, F. (1989) Population dynamics of tropical fisheries: the Mexican experience. In Chávez, E.A., ed. Proc 1st Workshop Mexico-Australia on Marine Science. Mexico: CINVESTAV-Unidad Mérida; Australia: CSIRO, pp. 241–56.

    Google Scholar 

  • Arreguín-Sánchez, F. (1992) An approach to the study of the catchability coefficient with application to the red grouper (Epinephelus morio) fishery from the continental shelf of Yucatan, Mexico. PhD dissertation, CINVESTAV, Mexico. 222 pp.

    Google Scholar 

  • Arreguín-Sánchez, F. and González-Cano, J. (1996) Uso de habitats artificiales en la pesquería de langosta y su relación con la producción y eficiencia de pesca. In Cruz, R. and González-Cano, J. eds. Proc. Taller Binacional Mexico-Cuba. La utilización de Refugios Artificiales en las Pesquerías de Langosta: sus Implicaciones en la Dinámica y Manejo del Recurso. 17–21 Mayo, 1993. CIP-Cuba, INP-México, pp. 150–60.

  • Arrizaga, A. and Veloso, C. (1982) Estimación de mortalidades (m, F y Z) y del coeficiente de capturabilidad q en la sardina común Clupea (Strangomera) bentincki Norman 1936, de Talcahuano, Chile. Monografías Biológicas 2, 39–49.

    Google Scholar 

  • Bakun, A., Christensen, C., Curtis, C., Cury, P., Durand, M.H., Husby, D., Mendelssohn, R., Mendo, J., Parrish, R., Pauly, D. and Roy, C. (1992) The climate and Eastern Ocean Systems Project. Naga, ICLARM Q. 15(2), 26–30.

    Google Scholar 

  • Bannerot, S.P. and Austin, C.B. (1983) Using frequency distributions of catch per unit of fishing effort to measure fish-stock abundance. Trans. Am. Fish. Soc. 112, 608–17.

    Google Scholar 

  • Baranov, F.I. (1918) On the question of the biological basis of fisheries. Nauchn. Issled. Ikthiologicheskii Inst. Izv. 1, 81–128. (in Russian)

    Google Scholar 

  • Beverton, R.J.H. and Holt, S.J. (1957) On the dynamics of exploited fish populations. Fish. Invest. Ser. II, Vol. 19. 533 pp.

  • Caddy, J.F. (1979) Some considerations underlying definitions of catchability and fishing effort in shellfish fisheries, and their relevance for stock assessment purposes. Fish. Mar. Serv. Rep. No. 1489. 22 pp.

  • Chapman, D.G. (1965) The estimation of mortality and recruitment from a single-tagging experiment. Biometrics 21, 529–42.

    Google Scholar 

  • Chittelborough, R.G. (1970) Studies on recruitment in the western Australian rock lobster Panulirus longipes cygnus George: density and natural mortality of juveniles. Aust. J. mar. freshwat. Res. 21, 131–48.

    Google Scholar 

  • Christensen, V. and Pauly, D. (1992) ECOPATH II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Modelling 61, 169–85.

    Google Scholar 

  • Collins, J.J. (1987) Increased catchability of the deep monofilament nylon gillnet and its expression in a simulated fishery. Can. J. Fish. aquat. Sci. 44 (Suppl. 2), 129–35.

    Google Scholar 

  • Cooke, J.G. (1985) On the relationship between catch per unit effort and whale abundance. Rep. int. Whal. Com. 35, 511–19.

    Google Scholar 

  • Csirke, J. (1988) Small schoalling pelagic fish stocks. In Gulland, J.A., ed. Fish Population Dynamics, 2nd edn. London: John Wiley, pp. 271–302.

    Google Scholar 

  • Csirke, J. (1989) Changes in the catchability coefficient in the peruvian anchoveta (Engraulis ringens) fishery. In Pauly, D., Muck, P., Mendo, J. and Tsukayama, I., eds. The Peruvian Upwelling Ecosystem: Dynamics and Interactions. (ICLARM Conf. Proceedings 18.) Institute del Mar del Peru (IMARPE), Callao, Perú; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Germany; and International Center for Aquatic Resources Management (ICLARM), Manila, Philippines, pp. 207–19.

    Google Scholar 

  • Cury, P. and C. Roy (eds) (1991) Pêcheries Ouest-africaines: Variabilité, Instabilité, et Changement. Paris: ORSTOM. 525 pp.

    Google Scholar 

  • DeLury, D.B. (1947) On the estimation of biological populations. Biometrics 3, 145–67.

    Google Scholar 

  • Dorel, D., Beillois, P., Desaunay, Y. and Guerault, D. (1985) Evaluation expérimentale des composantes de la capturabilité d'un chalut à pêche échantillonneur utilisé pour l'estimation d'abondance des juveniles de soles. ICES C.M. 1985/G:40, 11 pp.

  • Doubleday, W.G. (1976) A least square approach to analyzing catch at age data. Int. Comm. Northw. Atl. Fish. Res. Bull. 12, 69–81.

    Google Scholar 

  • Dupont, W.D. (1983) A stochastic catch-effort method for estimating animal abundance. Biometrics 39, 1021–33.

    Google Scholar 

  • Ehrdhardt, N. (1990) Mortality and catchability estimates for the stone crab (Menippe mercenaria) in Everglades National Park. Bull. Mar. Sci. 46, 324–34.

    Google Scholar 

  • Ehrich, S. and Groger, J. (1989) Diurnal variation in catchability of several fish species in the North Sea. ICES C.M. 1989/B:35, 10 pp.

  • Fournier, D. and Archibald, C.P. (1982) A general theory for analyzing catch at age data. Can. J. Fish. aquat. Sci. 39, 1195–1207.

    Google Scholar 

  • Gordoa, A. and Pereira, J.P. (1987) Catch fluctuations observed in the cape hake fishery in Division 1.5. ICSEAF. Colln. Scient. Pap. int. Comm. SE Atl. Fish. 207–18.

  • Grecco, V. and Overholtz, W.J. (1990) Causes of density-dependent catchability for Georges Bank haddock Melanogrammus aegelfinus. Can. J. Fish. aquat. Sci. 47, 385–94.

    Google Scholar 

  • Gulland, J.A. (1964) Manual of methods for fish population analysis. FAO. Fish. tech. Pap. No. 40. 60pp.

  • Gulland, J.A. (1965) Estimation of mortality rates. Annex to rep. Arctic Fish. Working Group. ICES, C.M. 1965. (3) 9 pp.

  • Gulland, J.A. (1983) Fish Stock Assessment. A Manual for Basic Methods. New York: John Wiley and Sons. 223 pp.

    Google Scholar 

  • Hilborn, R. and Walters, C.J. (1992) Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty. New York: Chapman and Hall. 570 pp.

    Google Scholar 

  • Hill, B.J. (1985) Effect of temperature on duration of emergence, speed of movement, and catchability of the prawn Penaeus esculentus. In Rothlisberg, P.C., Hill, B.J. and Staples, D.J. eds. Proceedings of the Second Australian National Prawn Seminar. Simpson Halligan, Brisbane, Australia, pp. 77–83.

    Google Scholar 

  • Ivanov, B.G. and Stolyarenko, D.A. (1988) Relation between currents and orientation of shrimps and its effect on trawl catchability: a new hypothesis. ICES C.M. 1988/k: 14, 9 pp.

  • Jones, R. (1974) Assessing the long-term effects of changes in fishing effort and mesh size from length composition data. ICES C.M. 1974/F:33. 13 pp. (mimeo).

  • Jones, R. (1981) The use of length composition data in fish stock assessment (with notes on VPA and cohort analysis). FAO Fish. Circ. No. 734. 55 pp.

  • Ko, S. and Kim, D. (1984) The behavior of fishes to the traps and their catch ability. Bull. Korean Fish. Soc. 17(1), 15–23.

    Google Scholar 

  • Leslie, P.H. and Davies, H.S. (1939) An attempt to determine the absolute number of rats on a given area. J. Anim. Ecol. 8, 94–113.

    Google Scholar 

  • Linfield, R.S.J. (1980) Catchability and stock density of common carp, Cyprinus carpio, L. in a Lake Fishery. Fish. Manage. 11(1), 11–22.

    Google Scholar 

  • MacCall, A.D. (1976) Density dependence of catchability coefficient in the California Pacific sardine, Sardinops sagax caerulea, purse seine fishery. Calif. Coop. Oceanic Fish. Invest. Rep. 18, 136–148.

    Google Scholar 

  • MacCall, A.D. (1990) Dynamic Geography of Marine Fish Populations. (Books in recruitment fishery oceanography). Seattle: Washington Sea Grant Program. 153 pp.

    Google Scholar 

  • Martínez, S. (1993) Variabilidad del coeficiente de capturabilidad en la pesquería de sardina monterrey (Sardinops caeruleus) del Golfo de California, México. Tesis de Maestría en Ciencias. Centro de Investigación y de Estudios Avanzados del IPN, Mérida. México. 143 pp.

    Google Scholar 

  • Megrey, B.A. (1989) Review and comparison of age-structured stock assessment models from theoretical and applied points of view. In Edwards, E.F. and Megrey, B.A., eds. Mathematical Analysis of Fish Stock Dynamics. Am. Fish. Soc. Symp. 6, 8–48.

  • Miller, R.J. (1990) Effectiveness of crab and lobster trap. Can. J. Fish. aquat. Sci. 47, 1228–51.

    Google Scholar 

  • Moffit, R.B. and Polovina, J.J. (1987) Distribution and yield of the deepwater shrimp Heterocarpus resource in The Marianas. Fishery Bull. 85, 339–49.

    Google Scholar 

  • Morgan, G.R. (1974) Aspects of the population dynamics of the western rock lobster Panulirus cygnus George. II. Seasonal changes in the catchability coefficient. Aust. J. mar. freshwat. Res. 25, 249–59.

    Google Scholar 

  • Moriyasu, M., Chiasson, Y.J., DeGrace, P. and Conan, G.Y. (1989) Preliminary study on catchability and size structure of snow crab (Chionectes opilio) in relation to trap type. ICES C.M. 1989/K:4, 19 pp.

  • Morrissy, N.M. and Caputi, N. (1981) Use of catchability equations for population estimations of mamon Cherax tenuimanus (Smith) (Decapoda: Parastacidae). Aust. J. mar. freshwat. Res. 32, 213–25.

    Google Scholar 

  • Murphy, G. (1965) A solution of the catch equation. J. Fish. Res. Bd Can. 22, 191–202.

    Google Scholar 

  • Murphy, G. (1966) Population biology of the Pacific sardine (Sardinops caerulea). Proc. Calif. Acad. Sci. 34, 1–84.

    Google Scholar 

  • Murphy, G. (1977) Characteristics of clupeoids. In Gulland, J.A., ed. Fish Population Dynamics, 1st edn. New York: John Wiley and Sons, pp. 283–308.

    Google Scholar 

  • Ostvedt, O.J. (1964) Comparison between catch per unit effort in the Norwegian gill-net and purseseine fishery for herring. Rapp. P.-v. Réun. Cons. int. Explor. Mer. 155, 90–93.

    Google Scholar 

  • Paloheimo, J.E. (1958) A method of estimating natural and fishing mortalities. J. Fish. Res. Bd Can. 15, 749–758.

    Google Scholar 

  • Paloheimo, J.E. (1980) Estimation of mortality rates in fish populations. Trans. Am. Fish. Soc. 109, 378–86.

    Google Scholar 

  • Paloheimo, J.E. and Dickie, L.M. (1964) Abundance and fishing success. Rapp. P.-v. Réun. Cons. Int. Explor. Mer. 155, 152–63.

    Google Scholar 

  • Pauly, D. and Tsukayama, I., (eds) (1987) The Peruvian Anchoveta and its Upwelling Ecosystem: Three Decades of Change. (ICLARM Studies and Reviews 15). Instituto del Mar del Peru (IMARPE), Callao, Perú; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Germany; and International Center for Aquatic Resources Management (ICLARM), Manila, Phillipines. 438 pp.

    Google Scholar 

  • Pauly, D., Muck, P., Mendo, J. and Tsukayama, I. (eds). (1989) The Peruvian Upwelling Ecosystem: Dynamics and Interactions. (ICLARM Conf. Proceedings 18.) Instituto del Mar del Peru (IMARPE), Callao, Perú; Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Germany; and International Center for Aquatic Resources Management (ICLARM), Manila, Philippines. 438 pp.

    Google Scholar 

  • Penn, J.W. (1984) The behavior and catchability of some commercially exploited penaeids and their relationship to stock and recruitment. In Gulland, J.A. and Rothschild, B.J. eds. Penaeid Shrimps: Their Biology and Management. Farnham, Surrey: Fishing News Books, pp. 173–86.

    Google Scholar 

  • Peterman, R.M. and Sterr, G.J. (1981) Relation between sport fishing catchability coefficients and salmon abundance. Trans. Am. Fish. Soc. 110, 585–93.

    Google Scholar 

  • Peterman, R.M., Sterr, G.J. and Bradford, M.J. (1985) Density-dependent catchability coefficients: comments. Trans. Am. Fish. Soc. 114, 436–440.

    Google Scholar 

  • Polovina, J.J. and Sakai, I. (1989) Impacts of artificial reefs on fishery production in Shimamaki, Japan. Bull. mar. Sci. 44, 997–1003.

    Google Scholar 

  • Pollock, K.H., Nichols, J.D., Brownie, C. and Hines, J.E. (1990) Statistical inference for capturerecapture experiments. Wildlife Monographs Suppl. J. Wildl. Manage. 54(1), 97 pp.

    Google Scholar 

  • Pope, J.G. (1972) An investigation of accuracy of Virtual Population Analysis. Int. Comm. NW Atl. Fish. Res. Bull. 9, 65–74.

    Google Scholar 

  • Pope, J.G. and Garrod, D. (1975) Sources of error in catch and effort quota regulation with particular reference to variations in the catchability coefficient. Res. Bull. ICNAF (11), 17–30.

  • Pope, J.G. and Shepherd, J.G. (1982) A simple method for the consistent interpretation of catch-at-age data. J. Cons. CIEM 40, 176–84.

    Google Scholar 

  • Pope, J.G. and Shepherd, J.G. (1985) A comparison of the performance of various methods for tuning VPA using effort data. J. Cons. int. Explor. Mer. 42, 129–51.

    Google Scholar 

  • Quinn, T.J. (1987) Standardization of catch per unit of effort for short-term trends in catchability. Nat. Resour. Modelling 1, 279–96.

    Google Scholar 

  • Radovich, J. (1973) A challenge of accepted concepts involving catch per unit of effort data. Proc. Ann. Meet. California-Nevada Chapter, Am. Fish. Soc., Feb. 3, 1973. 6 pp. (mimeo).

  • Ralston, S. (1990) Size selection of snappers (Lutjanidae) by hook and line gear. Can. J. Fish. aquat. Sci. 47, 696–700.

    Google Scholar 

  • Ricker, W.E. (1975) Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd Can. No. 191. 382 pp.

  • Rose, G.A. and Leggett, W.C. (1991) Effects of biomass-range interactions on catchability of migratory demersal fish by mobile fisheries: an example of Atlantic cod (Gadus morhua). Can. J. Fish. aquat. Sci. 48, 843–8.

    Google Scholar 

  • Sakuramoto, K. and Tanaka, S. (1986) Further development of an assessment technique for Southern Hemisphere minke whale population using a multi-cohort method. Rep. Int. Whal. Comm. 36, 207–12.

    Google Scholar 

  • Schaff, W.E. and Huntsman, G.R. (1972) Effects of fishing on the Atlantic menhaden stock: 1955– 1969. Trans. Am. Fish. Soc. 101, 290–97.

    Google Scholar 

  • Shardlow, T. and Hilborn, R. (1985) Density-dependent catchability coefficient. Comments. Trans. Am. Fish. Soc. 114, 436–40.

    Google Scholar 

  • Shepherd, J.G. (1987) Towards a method for short-term forecasting of catch-rates based on length compositions. In Pauly, D. and Morgan G.R. eds. Length-Based Methods in Fisheries Research. (ICLARM Conf. Proceedings 14.) International Center for Aquatic Resources Management (ICLARM), Manila, Philippines; and KISR, Kuwait, 167–76.

    Google Scholar 

  • Silliman, R.P. (1943) Studies on the Pacific pilchard or sardine (Sardinops caeruled) 5. A method of computing mortalities and replacements. U.S. Fish. Wildl. Serv. Spec. Sci. Rep. No. 24. 10 pp.

  • Sims, S.E. (1982) The effects of unevenly distributed catches on stock-size estimates using Virtual Population Analysis (cohort analysis). J. Cons., Cons. int. Explor. Mer. 40, 47–52.

    Google Scholar 

  • Sissenwine, M.P. and Bowman, E.W. (1978) An analysis of some factors affecting the catchability of fish by bottom trawls. ICNAF Res. Bull. 13, 81–7.

    Google Scholar 

  • Stokes, T.K. and Pope, J.G. (1987) The detectability of catchability trends from catch-at-age and comercial effort data. ICES C.M. 1987/D:14, 10 pp.

  • Ugland, K.I. (1985) Abundance estimation of the Northwestern Atlantic harp seal population. Polar Biol. 4, 187–98.

    Google Scholar 

  • Ultang, O. (1976) Catch per unit of effort in the Norwegian purse seine fishery for Atlanto- Scandinavian herring. FAO Fish. tech. Pap. No. 155, 91–101.

  • Wassenberg, T.J. and Hill, B.J. (1990) Moulting behavior of the tiger prawn Penaeus esculentus (Haswell). Aust. J. mar. freshwat. Res. 35, 561–71.

    Google Scholar 

  • Yamane, T. and Flores, E. (1989) Evaluation of the catching efficiency of small pots for prawns. Fish. Res. 8, 81–91.

    Google Scholar 

  • Yamane, T. and Fujishi, A. (1992) Catch performance of small prawn pots in terms of selectivity and escape. Fish. Res. 15, 291–9.

    Google Scholar 

  • Yamane, T. and Itaka, Y. (1987) Relation between ingress, escape and height of pot entrance. Nippon Suisan Gakkaishi 53, 2145–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arreguín-Sánchez, F. Catchability: a key parameter for fish stock assessment. Rev Fish Biol Fisheries 6, 221–242 (1996). https://doi.org/10.1007/BF00182344

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182344

Keywords

Navigation