Skip to main content
Log in

DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene fromLactobacillus helveticus CNRZ32

  • Applied Genetics and Regulation
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacillus helveticus CNRZ32 possesses and Xaa-prolyldipeptidyl aminopeptidase (PepX), which releases amino-terminal dipeptides from peptides containing proline residues in the penultimate position. The PepX gene, designatedpepX, fromLb. helveticus CNRZ32 was sequenced. Analysis of the sequence identified a putative 2379-bppepX open-reading frame, which encodes a polypeptide of 793 amino acid residues with a deduced molecular mass of 88 111 Da, The gene shows significant sequence identity with sequencedpepX genes from lactic acid bacteria. The product of the gene contains a motif that is almost identical with the active-site motif of the serine-dependent PepX from lactococci. The introduction ofpepX intoLactococcus lactis LM0230 on either pGK12 (a low-copy-number plasmid vector) did not result in a significant increase in PepX activity, while the introduction ofpepX into CNRZ32 on pGK12 resulted in a four-fold increase in PepX activity. Southern hybridization experiments revealed that thepepX gene from CNRZ32 is well conserved in lactobacilli, pediococci and streptococci. The physiological role of PepX during growth in lactobacillus MRS (a rich medium containing protein hydrolysates along with other ingredients) and milk was examined by comparing growth of CNRZ32 and a CNRZ32 PepX-negative derivative in MRS. However, the CRNZ32 PepX-negative derivative grew in milk at a reduced specific growth rate when compared to wild-type CNRZ32. Introduction of the cloned PepX determinant into the CNRZ32 PepX-negative derivative resulted in a construct with a specific growth rate similar to that of wild-type CNRZ32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adda J, Gripon J-C, Vassal L (1982) The chemistry of flavour and texture generation in cheese. Food Chem 9:115–129

    Google Scholar 

  • Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Atlan D, Laloi P, Portalier R (1989) Isolation and characterization of aminopeptidase-deficientLactobacillus bulgaricus mutants. Appl Environ Microbiol 55:1717–1723

    Google Scholar 

  • Atlan D, Laloi P, Portalier R (1990) X-prolyldipeptidyl aminopeptidase ofLactobacillus delbrueckii subsp.bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl Environ Microbiol 56:2174–2179

    Google Scholar 

  • Bairoch A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097–3103

    Google Scholar 

  • Bhowmik T, Marth EH (1990) Peptide-hydrolyzing enzymes ofPediococcus species. Microbios 62:197–211

    Google Scholar 

  • Bhowmik T, Steele JL (1993) Development of an electroporation procedure for gene distruption inLactobacillus helveticus CNRZ32. J Gen Microbiol 139:1433–1439

    Google Scholar 

  • Bhowmik T, Fernández L, Steele JL (1993) Gene replacement inLactobacillus helveticus. J Bacteriol 175:6341–6344

    Google Scholar 

  • Booth M, Ní Fhaoláin I, Jennings PV, O'Cuinn G (1990) Purification and characterization of a post-proline dipeptidyl aminopeptidase fromStreptococcus cremoris AM2. J Dairy Res 57:89–99

    Google Scholar 

  • Casey MG, Meyer J (1985) Presence of X-prolyl-dipeptidyl-peptidase in lactic acid bacteria. J Dairy Sci 68:3212–3215

    Google Scholar 

  • Chen J-D, Morrison DA (1987) Cloning ofStreptococcus pneumoniae DNA fragments inEscherichia coli requires vectors protected by strong transcriptional terminators. Gene 55:179–187

    Google Scholar 

  • Chich J-F, Chapot-Chartier M-P, Ribadeau-Dumas B, Gripon J-C (1992) Identification of the active site serine of the X-prolyl dipeptidyl aminopeptidase fromLactococcus lactis. FEBS Lett 314:139–142

    Google Scholar 

  • Christensen JE, Lin D, Palva A, Steele JL (1995) Sequence analysis, distribution and expression of an aminopeptidase N fromLactobacillus helveticus CNRZ32. Gene 155:89–93

    Google Scholar 

  • Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Philips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genusLactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12

    Google Scholar 

  • Davis BJ (1964) Disc Electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Google Scholar 

  • De Brujin FJ, Lupski JR (1984) The use of Tn5 mutagenesis in the rapid generation of correlated physical and genetic map of DNA segments cloned into multicopy plasmids —a review. Gene 27:131–149

    Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Google Scholar 

  • El Soda M, Desmazeaud MJ (1982) Les peptide-hydrolases des lactobacilles du groupeThermobacterium. I. Mise en evidence de ces activités chezLactobacillus helveticus, Lactobacillus acidophilus, L. lactis etL. bulgaricus. Can J Microbiol 28: 1181–1188

    Google Scholar 

  • Exterkate FA (1975) An introductory study of the proteolytic system ofStreptococcus cremoris strain HP. Neth Milk Dairy J 29:303–318

    Google Scholar 

  • Holo H, Nes IF (1989) High frequency transformation, by electroporation, ofLactococcus lactis subsp.cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    Google Scholar 

  • Khalid NM, Marth EH (1990) Purification and partial characterization of a prolyldepeptidyl aminopeptidase fromLactobacillus helveticus CNRZ 32. Appl Environ Microbiol 56:381–388

    Google Scholar 

  • Kok J, De Vos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ, de Vos WM (eds) Genetics and biotechnology of dairy lactic acid bacteria. Blackie, Glasgow

    Google Scholar 

  • Kok J, Van Der Vossen JMBM, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococi which also replicate inBacillus subtilis andEscherichia coli. Appl Environ Microbiol 48:726–731

    Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophatic character of a protein. J Mol Biol 157:105–132

    Google Scholar 

  • Leenhouts KJ, Kok J, Venema G (1991) Replacement recombination inLactococcus lactis. J Bacteriol 173:4794–4798

    Google Scholar 

  • Lemieux L, Simard RE (1991) Bitter flavour in dairy products. I. A review of the factors likely to influence its development, mainly in cheese manufacture. Lait 71:599–636

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonnucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Mayo B, Kok J, Venema K, Bockelmann W, Teuber M, Reinke H, Venema G (1991) Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase geneLactococcus lactis subsp.cremoris. Appl Environ Microbiol 57:38–44

    Google Scholar 

  • Mayo B, Kok J, Bockelmann W, Haandrikman A, Leenhouts KJ, Venema G (1993) Effect of X-prolyl dipeptidyl aminopeptidase deficiency onLactococcus lactis. Appl Environ Microbiol 59:2049–2055

    Google Scholar 

  • Meyer JD, Howald D, Jordi R, Fürst M (1989) Location of proteolytic enzymes inLactobacillus lactis andStreptococcus thermophilus and their influence on cheese ripening. Milchwissenschaft 44:678–681

    Google Scholar 

  • Meyer-Barton EC, Klein JR, Imam M, Plapp R (1993) Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) fromLactobacillus delbrüeckii ssp.lactis DSM7290. Appl Microbiol Biotechnol 40:82–89

    Google Scholar 

  • Miller CG, Mackinnon K (1974) Peptidase mutants ofSalmonella typhimurium. J Bacteriol 120:355–363

    Google Scholar 

  • Nardi M, Chopin M-C, Chopin A, Cals M-M, Gripon J-C (1991) Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene fromLactococcus lactis subsp.lactis NCDO 763. Appl Environ Microbiol 57:45–50

    Google Scholar 

  • Neidhardt FC, Ingaraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates Sunderland, Mass

    Google Scholar 

  • Nowakowski CM, Bhowmik TK, Steele JL (1993) Cloning of peptidase genes fromLactobacillus helveticus CNRZ 32. Appl Microbiol Biotechnol 39:204–210

    Google Scholar 

  • Olson NF (1990) The impact of lactic acid bacteria on cheese flavor. FEMS Microbiol Rev 87:131–148

    Google Scholar 

  • Pritchard GG, Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol Rev 12:179–206

    Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2ns edn. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York

    Google Scholar 

  • Simon D, Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning inStreptococcus lactis. Biochimie 70:559–566

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Swaisgood HE (1982) The chemistry of milk protein. In: Fox PF (ed) Developments in dairy chemistry, vol 1. Elsevier, London

    Google Scholar 

  • Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813

    Google Scholar 

  • Tinoco IJ, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41

    Google Scholar 

  • Van Alen-Boerrigter IJ, Baankreis R, De Vos WM (1991) Characterization and overexpression of theLactococcus lactis pepN gene and localization of its product, aminopeptidase N. Appl Environ Microbiol 57:2555–2561

    Google Scholar 

  • Walter R, Simmons WH, Yoshimoto T (1980) Proline specific endo-and exopeptidases. Mol Cell Biochem 30:111–127

    Google Scholar 

  • Zevaco C, Monnet V, Gripon J-C (1989) Intracelluar X-prolyl dipeptidyl peptidase fromLactococcus lactis subsp.lactis: purification and properties. J Appl Bacteriol 68:357–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yüksel, G.Ü., Steele, J.L. DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene fromLactobacillus helveticus CNRZ32. Appl Microbiol Biotechnol 44, 766–773 (1996). https://doi.org/10.1007/BF00178616

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178616

Keywords

Navigation