Skip to main content
Log in

Structure, luminosity, and dynamics of the Venus thermosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review here observations and models related to the chemical and thermal structures, airglow and auroral emissions and dynamics of the Venus thermosphere, and compare empirical models of the neutral densities based in large part on in situ measurements obtained by the Pioneer Venus spacecraft. Observations of the intensities of emissions are important as a diagnostic tool for understanding the chemical and physical processes taking place in the Venus thermosphere. Measurements, ground-based and from rockets, satellites, and spacecraft, and model predictions of atomic, molecular and ionic emissions, are presented and the most important sources are elucidated. Coronas of hot hydrogen and hot oxygen have been observed to surround the terrestrial planets. We discuss the observations of and production mechanisms for the extended exospheres and models for the escape of lighter species from the atmosphere. Over the last decade and a half, models have attempted to explain the unexpectedly cold temperatures in the Venus thermosphere; recently considerable progress has been made, although some controversies remain. We review the history of these models and discuss the heating and cooling mechanisms that are presently considered to be the most important in determining the thermal structure. Finally, we discuss major aspects of the circulation and dynamics of the thermosphere: the sub-solar to anti-solar circulation, superrotation, and turbulent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, V. J., Eastes, R. W., Yee, J. H., Solomon, S. C., and Chakrabarti, S.: 1986, ‘Ultraviolet Nightglow Production Near the Magnetic Equator by Neutral Particle Precipitation’, J. Geophys. Res. 91, 11365.

    Google Scholar 

  • Adams, W. S. and Dunham, T.: 1932, ‘Absorption Bands in the Infrared Spectrum of Venus’, Publ. Astron. Soc. Pacific 44, 243.

    Google Scholar 

  • Ajello, J. M.: 1971, ‘Emission Cross Section of CO2 by Electron Impact in the Interval 1260–4500 Å’, J. Chem. Phys. 55, 3169.

    Google Scholar 

  • Alge, E., Adams, N. G., and Smith, D.: 1987, ‘Measurements of the Dissociative Recombination Coefficients of O +2 , NO+, and NH +4 in the Temperature Range 200–600 K’, J. Phys. B16, 1433.

    Google Scholar 

  • Ali, A. A., Ogryzlo, E. A., Shen, Y. Q., and Wassel, P. T.: 1986, ‘The Formation of O2(a 1 gD g ) in Homogeneous and Heterogeneous Atom Recombination’, Can. J. Phys. 64, 1614.

    Google Scholar 

  • Allen, D. C., Scragg, T., and Simpson, C. J. S. M.: 1980, ‘Low Temperature Fluorescence Studies of the Deactivation of the Bend-Stretch Manifold of CO2’, Chemical Phys. 51, 279.

    Google Scholar 

  • Anderson, D. E.: 1975, ‘The Mariner 5 Ultraviolet Photometer Experiment: Analysis of Rayleigh-Scattering and 1304-Å Radiation from Venus’, J. Geophys. Res. 80, 3063.

    Google Scholar 

  • Anderson, D. E.: 1976, ‘The Mariner 5 Ultraviolet Spectrometer Experiment: Analysis of Hydrogen Lyman-α Data’, J. Geophys. Res. 81, 1213.

    Google Scholar 

  • Anderson, S. M., Klein, F. S., and Kaufman, F.: 1985, ‘Kinetics of the Isotope Exchange Reaction of 18O with NO and O2 at 298 K’, J. Chem. Phys. 83, 1648.

    Google Scholar 

  • Atkinson, R. and Welge, K. H.: 1972, ‘Temperature Dependence of O(1 S) Deactivation by CO2, O2, N2, and Ar’, J. Chem. Phys. 57, 3689.

    Google Scholar 

  • Atreya, S. K., Pollack, J. B., and Matthews, M. S.: 1989, Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Baker, N. L. and Leovy, C. B.: 1987, ‘Zonal Winds Near Venus’ Cloud Top Level: A Model Study of the Interaction between the Zonal Mean Circulation and the Semidiurnal Tide’, Icarus 69, 202.

    Google Scholar 

  • Banks, P. M. and Kockarts, G.: 1973, Aeronomy, Academic Press, New York.

    Google Scholar 

  • Barker, E. S.: 1975, ‘Observations of Venus Water Vapour over the Disc of Venus’, Icarus 25, 268.

    Google Scholar 

  • Barth, C. A.: 1964, ‘Three-Body Reactions’, Ann. Geophys. 20, 183.

    Google Scholar 

  • Barth, C. A.: 1968, ‘Interpretation of Mariner 5 Lyman Alpha Measurements’, J. Atmospheric Sci. 25, 564.

    Google Scholar 

  • Barth, C. A.: 1969, ‘Planetary Ultraviolet Spectroscopy’, Appl. Optics 8, 1295.

    Google Scholar 

  • Barth, C. A., Pierce, J. B., Kelly, K. K., Wallace, L., and Fastie, W. G.: 1967, ‘Ultraviolet Emission Observed Near Venus from Mariner V’, Science 158, 1675.

    Google Scholar 

  • Barth, C. A., Wallace, L., and Pearce, J. B.: 1968, ‘Mariner 5 Measurement of Lyman-alpha Radiation Near Venus’, J. Geophys. Res. 73, 2541.

    Google Scholar 

  • Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., and Stewart, A. I.: 1971. ‘Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper Atmospheric Data’, J. Geophys. Res. 76, 2213.

    Google Scholar 

  • Barth, C. A., Hord, C. W., Stewart, A. I., and Lane, A. L.: 1972, ‘Mariner 9 Ultraviolet Spectrometer Experiment: Initial Results’, Science 175, 309.

    Google Scholar 

  • Bass, J. N.: 1974, ‘Translation to Vibration Energy Transfer in O + NH3 and O + CO2 Collisions’, J. Chem. Phys. 60, 2913.

    Google Scholar 

  • Bates, D. R.: 1981, ‘The Green Light of the Night Sky’, Planetary Space Sci. 29, 1061.

    Google Scholar 

  • Bates, D. R.: 1988a, ‘Transition Probabilities of the Bands of the Oxygen Systems of the Nightglow’, Planetary Space Sci. 36, 869.

    Google Scholar 

  • Bates, D. R.: 1988b, ‘Excitation and Quenching of the Oxygen Bands in the Nightglow’, Planetary Space Sci. 36, 875.

    Google Scholar 

  • Bates, D. R.: 1988c, ‘Excitation of 557.7 nm Line in Nightglow’, Planetary Space Sci. 36, 883.

    Google Scholar 

  • Bates, D. R.: 1989, ‘Oxygen Band System Transition Arrays’, Planetary Spaee Sci. 37, 881.

    Google Scholar 

  • Bates, D. R. and Zipf, E. C.: 1980, ‘The O(1 S) Quantum Yield from O +2 Dissociative Recombination’, Planetary Space Sci. 28, 1081.

    Google Scholar 

  • Bauer, S. J. and Hantsch, M. H.: 1989, ‘Solar Cycle Variation of the Upper Atmosphere Temperature of Mars’, Geophys. Res. Letters 16, 373.

    Google Scholar 

  • Bauer, S. J. and Taylor, H. A.: 1981, ‘Modulation of Venus Ion Densities Associated with Solar Variations’, Geophys. Res. Letters 8, 840.

    Google Scholar 

  • Bauer, S. H., Caballero, J. F., Curtis, R., and Wiesenfeld, J. R.: 1987, ‘Vibrational Relaxation Rates of CO2(001) with Various Collision Partners for T < 300 K’, J. Geophys. Chem. 91, 1778.

    Google Scholar 

  • Bauech, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Troe, J., and Watson, R. T.: 1980, ‘Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry’, J. Phys. Chem. Ref. Data 9, 295.

    Google Scholar 

  • Belton, M. J. S., Hunten, D. M., and Goody, R. M.: 1968, in J. C. Brandt and M. C. McElroy (eds.), ‘Quantitative Spectroscopy of Venus in the Region 8000–11000 Å’, The Atmospheres of Venus and Mars, Gordon and Breach, New York, pp. 69–98.

    Google Scholar 

  • Bernstein, R. B. and Levine, R. D.: 1975, ‘Role of Energy in Reactive Scattering: An Information-Theoretic Approach’, Adv. At. Mol. Phys. 11, 215.

    Google Scholar 

  • Bertaux, J. L. and Clarke, J. T.: 1989a, ‘Deuterium Content of the Venus Atmosphere’, Nature 338, 567.

    Google Scholar 

  • Bertaux, J. L. and Clarke, J. T.: 1989b, ‘Reply to Donahue, T. M., Deuterium on Venus’, Nature 340, 514.

    Google Scholar 

  • Bertaux, J. L., Blamont, J., Marcelin, M., Kurt, V. G., Romanova, N. N., Smirnov, A. S.: 1978, ‘Lyman-alpha Observations of Venera 9 and 10. I. ‘The Nonthermal Hydrogen Population in the Exosphere of Venus’, Planetary Space Sci. 26, 817.

    Google Scholar 

  • Bertaux, J. L., Blamont, J. E., Lupine, V. M., Kurt, V. G., Romanova, N. N., and Smirnov, A. S.: 1981, ‘Venera 11 and Venera 12 Observations of EUV Emission from the Upper Atmosphere of Venus’, Planetary Space Sci. 29, 149.

    Google Scholar 

  • Bertaux, J. L., Lepine, V. M., Kurt, V. G., and Smirnov, A. S.: 1982, ‘Altitude Profile of H in the Atmosphere of Venus from Lyman-α Observations of Venera 11 and Venera 12 and Origin of the Hot Exospheric Component’, Icarus 52, 221.

    Google Scholar 

  • Bertaux, J. L., Chassefiere, E., and Kurt, V. G.: 1985, ‘Venus EUV Measurements of Hydrogen and Helium from Venera 11 and Venera 12’, Adv. Space Res. 5, 119.

    Google Scholar 

  • Biermann, L., Brosowski, B., and Schmidt, H. U.: 1967, ‘Interaction of the Solar Wind with a Comet’, Solar Phys. 1, 254.

    Google Scholar 

  • Bougher, S. W.: 1980, ‘The Ultraviolet Night Airglow of Venus — Morphology and Implications’, MS Thesis, University of Colorado, Boulder.

    Google Scholar 

  • Bougher, S. W.: 1985, ‘Venus Thermospheric Circulation’, PhD. Thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Bougher, S. W. and Dickinson, R. E.: 1988, ‘Mars Mesosphere and Thermosphere. I. Global Mean Heat Budget and Thermal Structure’, J. Geophys. Res. 93, 7325.

    Google Scholar 

  • Bougher, S. W., Dickinson, R. E., Ridley, E. C., Roble, R. G., Nagy, A. F., and Cravens, T. E.: 1986, ‘Venus Mesosphere and Thermosphere. II. Global Circulation, Temperature, and Density Variations’, Icarus 68, 284.

    Google Scholar 

  • Bougher, S. W., Roble, R. G., and Dickinson, R. E.: 1988a, ‘The Thermospheres of Venus and Mars: A Comparison of Global Structure and Winds Using the NCAR-TGCM’, Bull. Am. Astron. Soc. 20, 851.

    Google Scholar 

  • Bougher, S. W., Dickinson, R. E., Ridley, E. C., and Roble, R. G.: 1988b, ‘Venus Mesosphere and Thermosphere. III. Three-Dimensional General Circulation with Coupled Dynamics and Composition’, Icarus 73, 545.

    Google Scholar 

  • Bougher, S. W., Dickinson, R. E., Roble, R. G., and Ridley, E. C.: 1988c, ‘Mars Thermospheric General Circulation Model: Calculations for the Arrival of Phobos at Mars’, Geophys. Res. Letters 15, 1511.

    Google Scholar 

  • Bougher, S. W., Gerard, J. C., Stewart, A. I. F., and Fesen, C. G.: 1990a, ‘The Venus Nitric Oxide Night Airglow: Model Calculations Based on the Venus Thermospheric General Circulation Model’, J. Geophys. Res. 95, 6271.

    Google Scholar 

  • Bougher, S. W., Roble, R. G., Ridley, E. C., and Dickinson, R. E.: 1990b, ‘The Mars Thermosphere: 2 General Circulation with Coupled Dynamics and Composition’, J. Geophys. Res. 95, 14811.

    Google Scholar 

  • Braun, W., Bass, A. M., Davis, D. D., and Simmons, J. J.: 1969, ‘Flash Photolysis of Carbon Suboxide: Absolute Rate Constants for Reactions of C(3 P) and C(1 D) with H2, N2, CO, NO, O2 and CH4’, Proc. Roy. Soc. London Ser. A312, 417.

    Google Scholar 

  • Breus, T. K., Gringauz, K. I., and Verigin, M. I.: 1985, ‘On the Properties and Origin of the Venus Ionosphere’, Adv. Space Res. 5, 145.

    Google Scholar 

  • Brinton, H. C., Taylor, H. A., Jr., Niemann, H. B., Mayr, H. G., Nagy, A. F., Cravens, T. E., and Strobel, D. F.: 1980, ‘Venus Nighttime Hydrogen Bulge’, Geophys. Res. Letters 7, 865.

    Google Scholar 

  • Broadfoot, A. L., Kumar, S., Belton, M. J. S., and McElroy, M. B.: 1974, ‘Ultraviolet Observations of Venus from Mariner 10: Preliminary Results’, Science 183, 1315.

    Google Scholar 

  • Broadfoot, A. L., Clapp, S. S., and Stuart, F. E.: 1977, ‘Mariner 10 Ultraviolet Spectrometer: Airglow Experiment’, Space Sci. Instr. 3, 199.

    Google Scholar 

  • Buchwald, M. I. and Bauer, S. H.: 1972, ‘Vibrational Relaxation in CO2 with Selected Collision Partners’, J. Phys. Chem. 76, 3108.

    Google Scholar 

  • Burnett, T. and Rountree, S. P.: 1979, ‘Differential and Total Cross Sections for Electron Impact Ionization of Atomic Oxygen’, Phys. Rev. A20, 1468.

    Google Scholar 

  • Carlson, R. W. and Judge, D. L.: 1973, ‘Rocket Observations of the Extreme Ultraviolet Dayglow’, Planetary Space Sci. 21, 879.

    Google Scholar 

  • Center, R. E.: 1973, ‘Vibrational Relaxation of CO2 by O Atoms’, J. Chem. Phys. 59, 3523.

    Google Scholar 

  • Chamberlain, J. W.: 1963, ‘Planetary Coronae and Atmospheric Evaporation’, Planetary Space Sci. 11, 901.

    Google Scholar 

  • Chamberlain, J. W.: 1977, ‘Charge Exchange in a Planetary Corona: Its Effect on the Distribution and Escape of Hydrogen’, J. Geophys. Res. 82, 1.

    Google Scholar 

  • Chamberlain, J. W. and Hunten, D. M.: 1987, Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry, Academic Press, New York, pp. 45–48.

    Google Scholar 

  • Chapman, S.: 1931, ‘Some Phenomena of the Upper Atmosphere’, Proc. Roy. Soc. London A132, 353.

    Google Scholar 

  • Chassefiere, E., Bertaux, J. L., Kurt, V. G., and Smirnov, A. S.: 1986, ‘Venus EUV Measurements of Helium at 58.4 nm from Venera 11 and Venera 12 and Implications for the Outgassing History’, Planetary Space Sci. 34, 585.

    Google Scholar 

  • Choo, Y. C. and Ming-Tuan Leu: 1985, ‘Determination of O2(1 g +) and O2(1 Δ g yields in Cl + O2 and Cl + O3 Reactions’, J. Phys. Chem. 89, 4832.

    Google Scholar 

  • Chu, J. O., Flynn, G. W., and Weston, R. E.: 1983, ‘Spectral Distribution of Vibrational States Produced by Collisions with Fast Hydrogen Atoms from Laser Photolysis of HBr’, J. Chem. Phys. 78, 2990.

    Google Scholar 

  • Clancy, R. T. and Muhleman, D. O.: 1985a, ‘Diurnal CO Variations in the Venus Mesosphere from CO Microwave Spectra’, Icarus 64, 157.

    Google Scholar 

  • Clancy, R. T. and Muhleman, D. O.: 1985b, ‘Chemical-Dynamical Models of the Venus Mesosphere Based Upon Diurnal Microwave CO Variations’, Icarus 64, 183.

    Google Scholar 

  • Cleary, D. D.: 1986, ‘Daytime High Latitude Rocket Observations of the NO γ, δ, and ɛ Bands’, J. Geophys. Res. 91, 11337.

    Google Scholar 

  • Connes, P., Connes, J., Benedict, W. S., and Kaplan, L. D.: 1967, ‘Traces of HCL and HF in the Atmosphere of Venus’, Astrophys. J. 152, 731.

    Google Scholar 

  • Connes, P., Connes, J., Kaplan, L. D., and Benedict, W. S.: 1968, ‘Carbon Monoxide in the Venus Atmosphere’, Astrophys. J. 152, 731.

    Google Scholar 

  • Connes, J., Connes, P., and Maillard, J. P.: 1969, Atlas des spectres dans le proche infrarouge de Venus, Mars, Jupiter et Saturn, Centre National de la Recherche Scientific, Paris.

    Google Scholar 

  • Connes, P., Noxon, J. F., ‘Traub, W. A., and Carleton, N. P.: 1979, ‘O2(1 Δ) Emission in the Day and Night Airglow of Venus’, Astrophys. J. 233, L29.

    Google Scholar 

  • Conway, R. R.: 1981, ‘Spectroscopy of the Cameron Bands in the Mars Airglow’, J. Geophys. Res. 86, 4767.

    Google Scholar 

  • Cook, G. R., Metzger, P. H., and Ogawa, M.: 1965, ‘Photoionization and Absorption Coefficients of CO in the 600 to 1000 Å Region’, Can. J. Phys. 43, 1706.

    Google Scholar 

  • Cooper, D. L., Yee, J. H., and Dalgarno, A.: 1984, ‘Energy Transfer in Oxygen-Hydrogen Collisions’, Planetary Space Sci. 32, 825.

    Google Scholar 

  • Cravens, T. E., Gombosi, T. I., and Nagy, A. F.: 1980, ‘Hot Hydrogen in the Exosphere of Venus’, Nature (London) 283, 178.

    Google Scholar 

  • Cravens, T. E., Kliore, A. J., Kozyra, J. U., and Nagy, A. F.: 1981, ‘The Ionospheric Peak on the Venus Dayside’, J. Geophys. Res. 86, 11323.

    Google Scholar 

  • Cravens, T. E., Brace, L. H., Taylor, H. A., Russell, C. T., Knudsen, W. L., Miller, K. L., Barnes, A., Mihalov, J. D., Scarf, F. L., Quenon, S. J., and Nagy, A. F.: 1982, ‘Disappearing Ionospheres on the Nightside of Venus’, Icarus 51, 271.

    Google Scholar 

  • Cravens, T. E., Crawford, S. L., Nagy, A. F., and Gombosi, T. I.: 1983, ‘A Two-Dimensional Model of the Ionosphere of Venus’, J. Geophys. Res. 88, 5595.

    Google Scholar 

  • Dalgarno, A. and Degges, T. C.: 1971, in C. Sagan, T. Owen, and H. J. Smith (eds.), ‘CO +2 Dayglow on Mars and Venus’, Planetary Atmospheres, D. Reidel Publ. Co., Dordrecht, Holland, pp. 337–345.

    Google Scholar 

  • Degen, V.: 1981, ‘Vibrational Enhancement and the Excitation of N +2 and the First Negative System in the High Altitude Red Aurora and the Dayside Cusp’, J. Geophys. Res. 86, 11, 1372.

    Google Scholar 

  • Del Genio, A. D., Schubert, G., and Strauss, J. M.: 1979, ‘Acoustic Gravity Waves in the Thermosphere of Venus’, Icarus 39, 401.

    Google Scholar 

  • DeMore, W. B. and Yung, Y. L.: 1982, ‘Catalytic Processes in the Atmospheres of the Earth and Venus’, Science 217, 12099.

    Google Scholar 

  • DeMore, W. B., Leu, M.-T., Smith, R. H., and Yung, Y. L.: 1985, ‘Laboratory Studies on the Reactions between Chlorine, Sulfur Dioxide and Oxygen: Implications for the Venus Stratosphere’, Icarus 63, 347.

    Google Scholar 

  • Dickinson, R. E.: 1972, ‘Infrared Radiative Heating and Cooling in the Venusian Mesosphere. I. Global Mean Radiative Equilibrium’, J. Atmospheric Sci. 29, 1531.

    Google Scholar 

  • Dickinson, R. E.: 1973, ‘Method for Parameterization for Infrared Cooling between Altitudes of 30 and 70 Kilometers’, J. Geophys. Res. 78, 4451.

    Google Scholar 

  • Dickinson, R. E.: 1976, ‘Venus Mesosphere and Thermosphere Temperature Structure: Global Mean Radiative and Conductive Equilibrium’, Icarus 27, 479.

    Google Scholar 

  • Dickinson, R. E.: 1984, ‘Infrared Radiative Cooling in the Mesosphere and Lower Thermosphere’, J. Atmospheric Terrest. Phys. 46, 995.

    Google Scholar 

  • Dickinson, R. E. and Bougher, S. W.: 1986, ‘Venus Mesosphere and Thermosphere. I. Heat Budget and Thermal Structure’, J. Geophys. Res. 91, 70.

    Google Scholar 

  • Dickinson, R. E. and Ridley, E. C.: 1972, ‘A Numerical Solution for the Composition of a Steady Subsolar-to-Antisolar Circulation with Application to Venus’, J. Atmospheric Sci. 29, 1557.

    Google Scholar 

  • Dickinson, R. E. and Ridley, E. C.: 1975, ‘A Numerical Model for the Dynamics and Composition of the Venusian Thermosphere’, J. Atmospheric Sci. 32, 1219.

    Google Scholar 

  • Dickinson, R. E. and Ridley, E. C.: 1977, ‘Venus Mesosphere and Thermosphere Temperature Structure. II. Day-Night Variations’, Icarus 30, 163.

    Google Scholar 

  • Dickinson, R. E., Ridley, E. C., and Roble, R. G.: 1984, ‘Thermospheric General Circulation with Coupled Dynamics and Composition’, J. Atmospheric Sci. 41, 205.

    Google Scholar 

  • Dickinson, R. E., Roble, R. G., and Bougher, S. W.: 1987, ‘Radiative Cooling in the NLTE Region of the Mesosphere and Lower Thermosphere — Global Energy Balance’, Adv. Space Res. 7, 10, 5.

    Google Scholar 

  • Doering, J. P. and Gulcicek, E. E.: 1988, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen: 7. The 3 P1 D and 3 P1 S Transitions from 4.0 to 30 eV’, J. Geophys. Res. (in press).

  • Doering, J. P. and Gulcicek, E. E.: 1989, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen’, J. Geophys. Res. 94, 2733.

    Google Scholar 

  • Doering, J. P. and Vaughan, S. O.: 1986, ‘Absolute Experimental Differential and Integral Cross Sections for Atomic Oxygen. 1. The (3 P3 S 0) Transition (1304 Å) at 100 eV’, J. Geophys. Res. 91, 3279.

    Google Scholar 

  • Doering, J. P., Gulcicek, E. E., and Vaughan, S. O.: 1985, ‘Electron Impact Measurements of Oscillator Strengths for Dipole-Allowed Transitions of Atomic Oxygen’, J. Geophys. Res. 90, 5279.

    Google Scholar 

  • Donahue, T. M.: 1968, ‘The Upper Atmosphere of Venus: A Review’, J. Atmospheric Sci. 25, 568.

    Google Scholar 

  • Donahue, T. M.: 1989, ‘Deuterium on Venus’, Nature 340, 513.

    Google Scholar 

  • Donahue, T. M. and Pollack, J. B.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Origin and Evolution of Venus's Atmospheric Structure’, Venus, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Donahue, T. M., Hoffman, J. H., Hodges, R. R., and Watson, A. J.: 1982, ‘Venus was Wet: A Measurement of the Ratio of Deuterium to Hydrogen’, Science 216, 630.

    Google Scholar 

  • Doschek, G. A., Behring, W. E., and Feldman, U.: 1974, ‘The Widths of the Solar He i and He ii Lines at 584, 538, and 304 Å’, Astrophys. J. 190, L141.

    Google Scholar 

  • Durrance, S. T.: 1981, ‘The Carbon Monoxide Fourth Positive Bands in the Venus Dayglow. 1. Synthetic Spectra’, J. Geophys. Res. 86, 9115.

    Google Scholar 

  • Durrance, S. T., Barth, C. A., and Stewart, A. I. F.: 1988, ‘Pioneer Venus Observations of the Venus Dayglow Spectrum 1250–1430 Å’, Geophys. Res. Letters 7, 222.

    Google Scholar 

  • Durrance, S. T., Conway, R. R., Barth, C. A., and Lane, A. L.: 1981, ‘IUE High Resolution Observation of the Venus Dayglow Spectrum 1280–1380 Å’, Geophys. Res. Letters 8, 111.

    Google Scholar 

  • Eckstrom, D. J.: 1973, ‘Vibrational Relaxation of Shock-Related N2 by Atomic Oxygen Using the IR Tracer Method’, J. Chem. Phys. 59, 2787.

    Google Scholar 

  • Erdman, P. W. and Zipf, E. C.: 1983, ‘Electron-Impact Excitation of the Cameron System (a 3 ΠX 1 Σ) of CO’, Planetary Space Sci. 31, 317.

    Google Scholar 

  • Ewing, G.: 1978, ‘The Role of van der Waals Molecules in Vibrational Relaxation Processes’, Chem. Phys. 29, 253.

    Google Scholar 

  • Fehsenfeld, F. C., Dunkin, D. B., and Ferguson, E. E.: 1970, ‘Rate Constants for the Reaction of CO +2 with O, O2, and NO; N +2 with O and NO; and O +2 with NO’, Planetary Space Sci. 18, 1267.

    Google Scholar 

  • Feldman, P. D., Moos, H. W., Clarke, J. T., and Lane, A. L.: 1979, ‘Identification of the UV Nightglow from Venus’, Nature 279, 221.

    Google Scholar 

  • Feldman, P. D., Anderson, D. E., Meier, R. R., and Gentieu, E. P.: 1981, ‘The Ultraviolet Dayglow. 4. The Spectrum and Excitation of Singly Ionized Oxygen’, J. Geophys. Res. 86, 3583.

    Google Scholar 

  • Fels, S. B. and Lindzen, R. S.: 1974, ‘The Interaction of Thermally Driven Excited Gravity Waves with Mean Flows’, Geophys. Fluid Dyn. 6, 149.

    Google Scholar 

  • Fernando, R. P. and Smith, I. W. M.: 1979, ‘Vibrational Relaxation of NO by Atomic Oxygen’, Chem. Phys. Letters 66, 218.

    Google Scholar 

  • Fesen, C. G., Gerard, J. C., and Rusch, D. W.: 1989, ‘Rapid Deactivation of N(2 D) by O: Impact on Thermospheric and Mesospheric Odd Nitrogen’, J. Geophys. Res. 94, 5419.

    Google Scholar 

  • Fink, U., Larson, H. P., Kuiper, G. P., and Poppen, R. F.: 1972, ‘Water Vapor in the Atmosphere of Venus’, Icarus 17, 617.

    Google Scholar 

  • Flynn, G. W. and Weston R. E.: 1986, ‘Hot Atoms Revisited: Laser Photolysis and Product Detection’, Ann. Rev. Phys. Chem. 37, 551.

    Google Scholar 

  • Fox, J. L.: 1978, ‘The Upper Atmospheres of Mars and Venus’, Ph.D. Thesis, Harvard University.

  • Fox, J. L.: 1982a, ‘The Chemistry of Metastable Species in the Venusian Ionosphere’, Icarus 51, 248.

    Google Scholar 

  • Erratum: 1985, J. Geophys. Res. 90, 11106.

  • Fox, J. L.: 1982b, ‘Atomic Carbon in the Atmosphere of Venus’, J. Geophys. Res. 87, 9211.

    Google Scholar 

  • Fox, J. L.: 1985, ‘The O +2 Vibrational Distribution in the Venusian Ionosphere’, Adv. Space Res. 5, 165.

    Google Scholar 

  • Fox, J. L.: 1986a, ‘The O +2 Vibrational Distribution in the Dayside Ionosphere’, Planetary Space Sci. 34, 1252.

    Google Scholar 

  • Fox, J. L.: 1986b, ‘Models for Aurora and Airglow Emissions from Other Planetary Atmospheres’, Can. J. Phys. 64, 1631.

    Google Scholar 

  • Fox, J. L.: 1988, ‘Heating Efficiencies in the Thermosphere of Venus Reconsidered’, Planetary Space Sci. 36, 37.

    Google Scholar 

  • Fox, J. L.: 1989a, in J. B. A. Mitchell and S. L. Guberman (eds.), ‘Dissociative Recombination in Aeronomy’, Dissociative Recombination: Theory, Experiment and Applications, World Scientific, Singapore.

    Google Scholar 

  • Fox, J. L.: 1989b, ‘The Neutral Thermospheres of Mars and Venus’, EOS (Trans. Am. Geophys. Union) 70, 387.

    Google Scholar 

  • Fox, J. L.: 1990a, ‘The Red and Green Lines of Atomic Oxygen in the Nightglow of Venus’, Adv. Space Res. 10 (5), 31.

    Google Scholar 

  • Fox, J. L.: 1990b, The Production of Hot Oxygen at the Exobases of the Terrestrial Planets (in preparation).

  • Fox, J. L. and Black, J. H.: 1989, ‘Photodissociation of CO in the Thermosphere of Venus’, Geophys. Res. Letters 16, 291.

    Google Scholar 

  • Fox, J. L. and Dalgarno, A.: 1979, ‘Ionization, Luminosity and Heating of the Upper Atmosphere of Mars’, J. Geophys. Res. 84, 7315.

    Google Scholar 

  • Fox, J. L. and Dalgarno, A.: 1981, ‘lonization, Luminosity, and Heating of the Upper Atmosphere of Venus’, J. Geophys. Res. 86, 629.

    Google Scholar 

  • Fox, J. L. and Dalgarno, A.: 1983, ‘Nitrogen Escape from Mars’, J. Geophys. Res. 88, 9027.

    Google Scholar 

  • Fox, J. L. and Dalgarno, A.: 1985, ‘The Vibrational Distribution of N +2 in the Terrestrial Ionosphere’, J. Geophys. Res. 90, 7557.

    Google Scholar 

  • Fox, J. L. and Stewart, A. I. F.: 1990, ‘The Venus Ultraviolet Aurora: a Soft Electron Source’, J. Geophys. Res. (submitted).

  • Frederick, J. E. and Rusch, D. W.: 1977, ‘On the Chemistry of Metastable Atomic Nitrogen in the F Region Deduced from Simultaneous Measurements of the 5200 Å Airglow and Atmospheric Composition’, J. Geophys. Res. 82, 3509.

    Google Scholar 

  • Freund, R. S.: 1971, ‘Dissociation of CO2 by Electron Impact with the Formation of Metastable CO(a 3 Π) and O(5 S)’, J. Chem. Phys. 55, 3569.

    Google Scholar 

  • Gel'man, B. G., Zolotukhin, V. G., Lamonov, N. I., Levchuk, B. V., Lipatov, A. N., Mukhin, L. M., Nenarokov, D. F., Rotin, V. A., and Okhotnikov, B. P.: 1979, ‘Analysis of Chemical Composition of Venus Atmosphere by Gas Chromatography’, Kossm. Issled. 17, 708; 1980, Cosmic Res. (Engl. transl.) 17, 585.

    Google Scholar 

  • Gerard, J. C., Stewart, A. I. F., and Bougher, S. W.: 1981, ‘The Altitude Distribution of the Venus Ultraviolet Nightglow and Implication on Vertical Transport’, Geophys. Res. Letters 8, 633.

    Google Scholar 

  • Gerard, J. C., Denye, E. J., and Lerho, H.: 1988, ‘Sources and Distribution of Odd Nitrogen in the Venus Daytime Thermosphere’, Icarus 75, 171.

    Google Scholar 

  • Goldstein, J.: 1989, ‘Absolute Wind Speed Measurements in the Lower Thermosphere of Venus Using Infrared Heterodyne Spectroscopy’, Ph.D. Thesis, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Gordiets, B. F. and Kulikov, Y. N.: 1985, ‘On the Mechanisms of Cooling of the Nightside Thermosphere of Venus’, Adv. Space Res. 5 (9), 113.

    Google Scholar 

  • Gordiets, B. F., Kulikov, Yu. N., Markov, M. N., and Marov, M. Ya.: 1982, ‘Numerical Modelling of the Thermospheric Heat Budget’, J. Geophys. Res. 87, 4504.

    Google Scholar 

  • Gordon, R. J.: 1981, ‘A Metastable Complex Model for Vibrational Relaxation’, J. Chem. Phys. 74, 1676.

    Google Scholar 

  • Grechnev, K. V., Istomin, V. G., Ozerov, L. N., and Klimovitskii, V. G.: 1979, ‘The Mass Spectrometer from Venera 11 and 12’, Kossm. Issled. 17, 697; 1980, Cosmic Res. (Engl. transl.) 17, 575.

    Google Scholar 

  • Greer, R. G. H., Murtagh, D. P., McDade, I. C., Dickinson, P. H. G., Thomas, L., Jenkins, D. B., Stegman, J., Llewellyn, E. J., Witt, G., MacKinnon, D. J., and Williams, E. R.: 1986, ‘ETON 1: A Data Base Pertinent to the Study of Energy Transfer in the Oxygen Nightglow’, Planetary Space Sci. 34, 771.

    Google Scholar 

  • Gringauz, K. I., Verigin, M. I., Breus, T. K., and Gombosi, T.: 1979, ‘The Interaction of Electrons in the Optical Umbra of Venus with the Planetary Atmosphere — The Origin of the Nighttime Ionosphere’, J. Geophys. Res. 84, 2123.

    Google Scholar 

  • Grinspoon, D. H. and Lewis, J. S.: 1988, ‘Cometary Water on Venus: Implications of Stochastic Impacts’, Icarus 74, 21.

    Google Scholar 

  • Guberman, S. L.: 1987, ‘The Production of O(1 S) in Dissociative Recombination of O +2 ’, Nature 327, 408.

    Google Scholar 

  • Guberman, S. L.: 1988, ‘The Production of O1 D from Dissociative Recombination of O +2 ’, Planetary Space Sci. 36, 47.

    Google Scholar 

  • Gulcicek, E. E. and Doering, J. P.: 1988, ‘Absolute Differential and Integral Cross Sections for Atomic Oxygen. 5. Revised Values for the 3 P3 S 0 (1304 Å) and 3 P3 D 0 (989 Å) Transitions Below 30 eV’, J. Geophys. Res. 93, 5879.

    Google Scholar 

  • Gulcicek, E. E., Doering, J. P., and Vaughan, S. O.: 1988, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen. 6. The 3 P3 P and 3 P5 P Transitions from 13.87 eV to 100 eV’, J. Geophys. Res. 93, 5885.

    Google Scholar 

  • Gutcheck, R. A. and Zipf, E. C.: 1973, ‘Excitation of the CO Fourth Positive System by the Dissociative Recombination of CO +2 Ions’, J. Geophys. Res. 78, 5429.

    Google Scholar 

  • Hartle, R. E. and Taylor, H. A.: 1983, ‘Identification of Deuterium Ions in the Ionosphere of Venus’, Geophys. Res. Letters 10, 965.

    Google Scholar 

  • Harvey, N. M.: 1982, ‘A Quantum Mechanical Investigation of Vibrational Energy Transfer in O(3 P) + CO2 Collisions’, Chem. Phys. Letters 88, 553.

    Google Scholar 

  • Hedin, A. E., Niemann, H. B., Kasprzak, W. T., and Seiff, A.: 1983, ‘Global Empirical Model of the Venus Thermosphere’, J. Geophys. Res. 88, 73. Erratum: 1983, J. Geophys. Res. 88, 6352.

    Google Scholar 

  • Henry, R. J. W. and McElroy, M. B.: 1968, in J. C. Brandt and M. B. McElroy (eds.), ‘Photoelectrons in Planetary Atmospheres’, The Atmospheres of Venus and Mars, Gordon and Breach Publishers, New York.

    Google Scholar 

  • Heroux, L. and Hinteregger, H. E.: 1978, ‘Aeronomical Reference Spectrum for Solar UV Below 2000 Å’, J. Geophys. Res. 83, 5305.

    Google Scholar 

  • Herzberg, G.: 1950, Spectra of Diatomic Molecules, Van Nostrand Reinhold Co., New York.

    Google Scholar 

  • Hodges, R. R. and Tinsley, B. A.: 1981, ‘Charge Exchange in the Venus Thermosphere as a Source of Hot Exospheric Hydrogen’, J. Geophys. Res. 86, 7649.

    Google Scholar 

  • Hodges, R. R. and Tinsley, B. A.: 1986, ‘The Influence of Charge Exchange on the Velocity Distribution of Hydrogen in the Venus Exosphere’, J. Geophys. Res. 91, 13649.

    Google Scholar 

  • Hoffman, J. H., Hodges, R. R., Donahue, T. M., and McElroy, M. B.: 1980a, ‘Composition of the Venus Lower Atmosphere from the Pioneer Venus Mass Spectrometer’, J. Geophys. Res. 85, 7882.

    Google Scholar 

  • Hoffman, J. H., Oyama, V. I., and von Zahn, U.: 1980b, ‘Measurements of the Venus Lower Atmosphere Composition: A Comparison of Results’, J. Geophys. Res. 85, 7871.

    Google Scholar 

  • Hogan, J. S. and Stewart, R. W.: 1969, ‘Exospheric Temperatures on Mars and Venus’, J. Atmospheric Sci. 26, 332.

    Google Scholar 

  • Hollenbach, D. J., Prasad, S. S., and Whitten, R. C.: 1985, ‘The Thermal Structure of the Dayside Upper Atmosphere of Venus Above 125 km’, Icarus 64, 205.

    Google Scholar 

  • Holton, J. R.: 1982, ‘The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere’, J. Atmospheric Sci. 39, 791.

    Google Scholar 

  • Holton, J. R.: 1983, ‘The Influence of Wave Breaking on the General Circulation of the Middle Atmosphere’, J. Atmospheric Sci. 40, 2497.

    Google Scholar 

  • Hou, A.: 1984, ‘Axisymmetric Circulations Forced by Heat and Momentum Sources: A Simple Model Applicable to the Venus Atmosphere’, J. Atmospheric Sci. 41, 3437.

    Google Scholar 

  • Hou, A. and Goody, R. M.: 1985, ‘Diagnostic Requirements for the Superrotation of Venus’, J. Atmospheric Sci. 42, 413.

    Google Scholar 

  • Hunten, D. M.: 1973, ‘The Escape of H2 from Titan’, J. Atmospheric Sci. 30, 726.

    Google Scholar 

  • Hunten, D. M.: 1973, ‘The Escape of Light Gases from Planetary Atmospheres’, J. Atmospheric Sci. 30, 1481.

    Google Scholar 

  • Hunten, D. M.: 1974, ‘Energetics of Thermospheric Eddy Transport’, J. Geophys. Res. 79, 2533.

    Google Scholar 

  • Hunten, D. M.: 1982, ‘Thermal and Nonthermal Escape Mechanisms for Terrestrial Bodies’, Planetary Space Sci. 30, 773.

    Google Scholar 

  • Hunten, D. M. and Donahue, T. M.: 1976, ‘Hydrogen Loss from the Terrestrial Planets’, Ann. Rev. Earth Planetary Sci. 4, 265.

    Google Scholar 

  • Hunten, D. M. and McElroy, M. B.: 1970, ‘Production and Escape of Hydrogen on Mars’, J. Geophys. Res. 75, 5989.

    Google Scholar 

  • Hunten, D. M., Pepin, R. O., and Walker, J. C. G.: 1987, ‘Mass Fractionation in Hydrodynamic Escape’, Icarus 69, 532.

    Google Scholar 

  • Hunten, D. M., Donahue, T. M., Walker, J. C. G., and Kasting, J. F.: 1989, in S. Atreya, J. Pollack, and M. Matthews (eds.), ‘Escape of Atmospheres and Loss of Water’, Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson, pp. 396–422.

    Google Scholar 

  • Ingersoll, A. P.: 1969, ‘The Runaway Greenhouse: A History of Water on Venus’, J. Atmospheric Sci. 26, 1191, 1969.

    Google Scholar 

  • Inoue, G. and Tsuchiya, S.: 1975, ‘Vibrational Relaxation of CO2(0001) in CO2, He, Ne, and Ar in the Temperature Range of 300–140 K’, J. Phys. Soc. Japan 38, 870.

    Google Scholar 

  • Istomin, V. G., Grechnev, K. V., Kochnev, V. A., and Ozerov, L. N.: 1979, ‘Composition of Venus Lower Atmosphere from Mass-Spectrometer Data’, Kossm. Issled. 17, 703; 1980, Cosmic Res. (Engl. transl.) 17, 581.

    Google Scholar 

  • Izakov, M. N.: 1978, ‘Effect of Turbulence on the Thermal Regime of Planetary Thermospheres’, Kossm. Issled. 16, 403 (in Russian).

    Google Scholar 

  • James, T. C.: 1971, ‘Transition Moments, Franck-Condon Factors, and Lifetimes of Forbidden Transitions. Calculation of the Intensity of the Cameron System of CO’, J. Chem. Phys. 55, 4118.

    Google Scholar 

  • Jeans, J. H.: 1925, The Dynamical Theory of Gases, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Johnson, C. E.: 1972, ‘Lifetime of CO(a 3 Π) Following Electron Impact Dissociation of CO2’, J. Chem. Phys. 57, 576.

    Google Scholar 

  • Julienne, P. S., Davis, J., and Oran, E.: 1974, ‘Oxygen Recombination in the Tropical Nightglow’, J. Geophys. Res. 79, 2540.

    Google Scholar 

  • Jusinski, L. E. and Slanger, T. G.: 1987, ‘Determination of the Rate Coefficient for Quenching N(2 D) by O(3 P)’, EOS Trans. AGU 68, 1389.

    Google Scholar 

  • Jusinski, L. E., Black, G., and Slanger, T. G.: 1988, ‘Resonance-Enhanced Multi-Photon Ionization Measurement of N(2 D) Quenching by O(3 P)’, J. Phys. Chem. 92, 5977.

    Google Scholar 

  • Kakar, R. K., Waters, J. W., and Wilson, W. J.: 1976, ‘Venus: Microwave Detection of Carbon Monoxide’, Science 191, 379.

    Google Scholar 

  • Kasprzak, W. T., Hedin, A. E., Niemann, H. B., and Spencer, N. W.: 1980, ‘Atomic Nitrogen in the Upper Atmosphere of Venus’, Geophys. Res. Letters 7, 106.

    Google Scholar 

  • Kasprzak, W. T., Hedin, A. E., Mayr, H. G., and Niemann, H. B.: 1988, ‘Wavelike Perturbations Observed in the Neutral Thermosphere of Venus’, J. Geophys. Res. 93, 11237.

    Google Scholar 

  • Kassel, T.: 1976, ‘Scattering of Solar Lyman Alpha by the (14, 0) Fourth Positive System of CO’, J. Geophys. Res. 81, 1411.

    Google Scholar 

  • Kasting, J. F. and Pollack, J. B.: 1983, ‘Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen’, Icarus 53, 479.

    Google Scholar 

  • Kasting, J. F. and Toon, O. B.: 1989, in S. Atreya, J. Pollack, and M. Matthews (eds.), ‘Climate Evolution on the Terrestrial Planets’, Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson, pp. 423–449.

    Google Scholar 

  • Kasting, J. F., Pollack, J. B., and Ackerman, T. P.: 1984, ‘Response of the Earth's Atmosphere to Increases in Solar Flux and Implications for Loss of Water from Venus’, Icarus 57, 335.

    Google Scholar 

  • Keating, G. M.: 1977, ‘Pioneer Venus Experiment Descriptions’, Space Sci. Rev. 20, 520.

    Google Scholar 

  • Keating, G. M. and Bougher, S. W.: 1987, ‘Neutral Upper Atmospheres of Venus and Mars’, Adv. Space Res. 7, 12, 57.

    Google Scholar 

  • Keating, G. M., Taylor, F. W., Nicholson, J. Y., and Hinson, E. W.: 1979, ‘Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere’, Science 205, 62.

    Google Scholar 

  • Keating, G. M., Nicholson, J. Y., and Lake, L. R.: 1980, ‘Venus Upper Atmosphere Structure’, J. Geophys. Res. 85, 7941.

    Google Scholar 

  • Keating, G. M., Bertaux, J. L., Bougher, S. W., Cravens, T. E., Dickinson, R. E., Hedin, A. E., Krasnopol'sky, V. A., Nagy, A. F., Nicholson, J. Y., III, Paxton, L. J., and von Zahn, U.: 1986, ‘Models of Venus Neutral Upper Atmosphere: Structure and Composition’, Adv. Space Res. 5, 117.

    Google Scholar 

  • Keldysh, M. V.: 1977, ‘Venus Exploration with the Venera 9 and Venera 10 Spacecraft’, Icarus 30, 605.

    Google Scholar 

  • Kenner, R. D. and Ogryzlo, E. A.: 1983, ‘Quenching of O2(c 1 -3u v = 0 by O(3 P), O2(a 1 Δ g , and Other Gases’, Can. J. Chem. 61, 921.

    Google Scholar 

  • Kenner, R. D., Ogryzlo, E. A., and Turley, S.: 1979, ‘On the Excitation of the Night Airglow on Earth, Venus and Mars’, J. Photochem. 10, 199.

    Google Scholar 

  • Kim, J., Nagy, A. F., Cravens, T. E., and Kliore, A. J.: 1988, ‘Solar Cycle Variations of the Electron Densities Near the Ionospheric Peak of Venus’, J. Geophys. Res. 94, 11997.

    Google Scholar 

  • Kirby, K., Constantinides, E. R., Babeu, S., Oppenheimer, M., and Victor, G. A.: 1979, ‘Photoionization and Photoabsorption Cross Sections of He, O, N2, and O2 for Aeronomic Calculations’, At. Data Nucl. Data Tables 23, 68.

    Google Scholar 

  • Kley, D., Lawrence, G. M., and Stone, E. C.: 1977, ‘The Yield of N(2 D) atoms in the Dissociative Recombination of NO+’, J. Chem. Phys. 66, 4157.

    Google Scholar 

  • Kliore, A., Cain, D. L., Levy, G. S., Fjeldbo, G., and Rasool, S. I.: 1969, ‘Structure of the Atmosphere of Venus Derived from Mariner V S-band Measurements’, Space Res. IX, 712.

    Google Scholar 

  • Kliore, A., Patel, I. R., Nagy, A. F., Cravens, T. E., and Gombosi, T.: 1979, ‘Initial Observations of the Nightside Ionosphere of Venus from Pioneer Venus Orbiter Radio Occultations’, Science 205, 99.

    Google Scholar 

  • Kliore, A. J. and Mullen, L.: 1987, ‘Solar Cycle Influence on the Topside Plasma Scale Height of the Venus Dayside Ionosphere’, Bull. Am. Astron. Soc. 19, 846.

    Google Scholar 

  • Kliore, A. J. and Mullen, L.: 1988, ‘The Long-Term Behavior of the Main Peak of the Dayside Ionosphere of Venus During Solar Cycle 21 and Its Implications on the Effect of the Solar Cycle Upon the Electron Temperature in the Main Peak Region’, J. Geophys. Res. 94, 13339.

    Google Scholar 

  • Knudsen, W. C.: 1973, ‘Escape of 4He and Fast O Atoms from Mars and Inferences on the 4He Mixing Ratio’, J. Geophys. Res. 78, 8049.

    Google Scholar 

  • Knudsen, W. C.: 1988, ‘Solar Cycle Changes in the Morphology of the Venus Ionosphere’, J. Geophys. Res. 93, 8756.

    Google Scholar 

  • Knudsen, W. C. and Miller, K. L.: 1985, ‘Pioneer Venus Superthermal Electron Flux Measurements in the Venus Umbra’, J. Geophys. Res. 90, 2695.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., Whitten, R. C., Spreiter, J. R., Miller, K. L., and Novak, V.: 1979, ‘Thermal Structure and Energy Influx into the Nightside Ionosphere’, Science 205, 105.

    Google Scholar 

  • Knudsen, W. C., Spenner, K., Miller, K. L., and Novak, V.: 1980, ‘Transport of Ionospheric O+ Ions Across the Venus Terminator and Implications’, J. Geophys. Res. 85, 7803.

    Google Scholar 

  • Knudsen, W. C., Miller, K. L., and Spenner, K.: 1986, J. Geophys. Res. 91, 11936.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1978, ‘Threshold Estimates of the Content of Some Substances in the Atmosphere of Mars and Venus from the Results of Spectroscopy of the Twilight Glow on the Mars 5, Venera 9 and Venera 10 Satellites’, Kossm. Issled. 16, 895; 1979, Cosmic Res. 16, 713.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1979, ‘Nightside Ionosphere of Venus’, Planetary Space Sci. 27, 1403.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1981, ‘Excitation of Oxygen Emission in the Night Airglow of the Terrestrial Planets’, Planetary Space Sci. 29, 925.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1982a, ‘5577-Å Airglow and Electron Fluxes in the Nighttime Atmosphere of Venus’, Kossm. Issled. 20, 742; 1983, Cosmic Res. (Engl. transl) 20, 530.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1982b, ‘Atomic Carbon in the Atmospheres of Mars and Venus’, Kossm. Issled 20, 595; 1983, Cosmic Res. (Engl. transl.) 20, 430.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1983a, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Venus Spectroscopy in the 3000–8000 Å Region by Veneras 9 and 10’, Venus, Univ. of Arizona Press, Tucson, pp. 459–483.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1983b, ‘Lightning and Nitric Oxide on Venus’, Planetary Space Sci. 31, 1363.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1985, ‘Total Injection of Water Vapor Into the Venus Atmosphere’, Icarus 62, 221.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1986a, Photochemistry of the Atmospheres of Mars and Venus, Springer-Verlag, New York.

    Google Scholar 

  • Krasnopol'sky, V. A.: 1986b, ‘Oxygen Emission in the Night Airglow of the Barth, Venus and Mars’, Planetary Spoace Sci. 34, 511.

    Google Scholar 

  • Krasnopol'sky, V. A. and Parshev, V. A.: 1981, ‘Chemical Composition of the Atmosphere of Venus’, Nature 282, 610.

    Google Scholar 

  • Krasnopol'sky, V. A. and Parshev, V. A.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Photochemistry of the Venus Atmosphere’, Venus, Univ. of Arizona Press, Tucson, p. 431.

    Google Scholar 

  • Krasnopol'sky, V. A. and Tomashova, G. V.: 1980, ‘Venus Nightglow Variations’, Cosmic Res. 18, 766.

    Google Scholar 

  • Krasnopol'sky, V. A., Krys'ko, A. A., Rogachev, V. N., and Parshev, V. A.: 1976, ‘Spectroscopy of the Night-Sky Luminescence of Venus from the Interplanetary Spacecraft Venera 9 and Venera 10’, Kossm. Issled. 14, 789; 1977, Cosmic Res. (Engl. transl.) 14, 687.

    Google Scholar 

  • Kumar, S. and Broadfoot, A. L.: 1975, ‘Helium 584 Å Airglow Emission from Venus: Mariner 10 Observations’, Geophys. Res. Letters 2, 357.

    Google Scholar 

  • Kumar, S. and Hunten, D. M.: 1974, ‘Venus: An Ionospheric Model with an Exospheric Temperature of 350 K’, J. Geophys. Res. 79, 2529.

    Google Scholar 

  • Kumar, S. and Taylor, H. A.: 1985, ‘Deuterium on Venus: Model Comparisons with Pioneer Venus Observations of the Predawn Bulge Ionosphere’, Icarus 62, 494.

    Google Scholar 

  • Kumar, S., Hunten, D. M., and Broadfoot, A. L.: 1978, ‘Non-Thermal Hydrogen in the Venus Exosphere: the Ionospheric Source and the Hydrogen Budget’, Planetary Space Sci. 26, 1063.

    Google Scholar 

  • Kumar, S., Hunten, D. M., and Taylor, H. A.: 1981, ‘H2 Abundance in the Atmosphere of Venus’, Geophys. Res. Letters 8, 237.

    Google Scholar 

  • Kumar, S., Hunten, D. M., and Pollack, J. P.: 1983a, ‘Nonthermal Escape of Hydrogen and Deuterium from Venus and Implications for Loss of Water’, Icarus 55, 369.

    Google Scholar 

  • Kumar, S., Chakrabarti, S., Paresce, F., and Bowyer, S.: 1983b, ‘The O+ 834-Å Dayglow: Satellite Observations and Interpretation with a Radiation Transfer Model’, J. Geophys. Res. 88, 9271.

    Google Scholar 

  • Kurt, V. G., Dostovalow, S. B., and Sheffer, E. K.: 1968, ‘The Venus Far Ultraviolet Observations with Venera 4’, J. Atmospheric Sci. 25, 668.

    Google Scholar 

  • Kurt, V. G., Romanova, N. N., Smirnov, A. S., Bertaux, J. L., and Blamont, J. L.: 1979, ‘Venus Ultraviolet Radiation in the Wavelength Region from 300 Å to 1657 Å from Venera 11 and Venera 12 Data (Preliminary Results)’, Kossm. Issled. 17, 772; 1980, Cosmic Res. (Engl. transl.) 17, 638.

    Google Scholar 

  • Kurt, V. G., Smirnov, A. S., Titarchuk, L. G., Bertaux, J. L., and Lepine, V. M.: 1983, ‘Scattering of Resonance Lines in the Upper Atmosphere of Venus According to Venera 11 and Venera 12 Ultraviolet Data’, Kossm. Issled. 21, 545; 1984, Cosmic Res. (Engl. transl.) 21, 443.

    Google Scholar 

  • Kuz'min, A. D.: 1970, ‘The Atmosphere of the Planet Venus’, Radio Sci. 5, 339.

    Google Scholar 

  • Kuz'min, A. D., Nanmov, A. P., Smirnova, T. V., and Vetekhnooskaya, U. N.: 1971, ‘Lower Atmosphere of Venus from Radio Astronomical and Space Measurements’, Space Res. 11, 141.

    Google Scholar 

  • Landau, L. and Teller, E.: 1936, ‘Zur Theorie der Schalldispersion’, Physik. Z. Sowjetunion 10, 34.

    Google Scholar 

  • Lawrence, G. M.: 1971, ‘Quenching and Radiation Rates of CO(a 3 Π)’, Chem. Phys. Letters 9, 575.

    Google Scholar 

  • Lawrence, G. M., Barth, C. A., and Argabright, V.: 1977, ‘Excitation of the Venus Night Airglow’, Science 195, 573.

    Google Scholar 

  • Leach, S., Devoret, M., and Eland, J. H. D.: 1978a, ‘Fluorescence Quantum Yields of Isotope CO +2 Ions’, Chem. Phys. 33, 113.

    Google Scholar 

  • Leach, S., Stannard, P. R., and Gelbart, W. M.: 1978b, ‘Interelectronic-State Perturbation Effects on Photoelectron Spectra and Emission Quantum Yields: Application to CO +2 ’, Mol. Phys. 36, 1119.

    Google Scholar 

  • Le Compte, M. A., Paxton, L. J., and Stewart, A. I. F.: 1989, ‘Analysis and Interpretation of Observations of Airglow at 297 nm in the Venus Thermosphere’, J. Geophys. Res. 94, 208.

    Google Scholar 

  • Lee, L. C. and Judge, D. L.: 1972, ‘Cross Sections for Production of CO +2 [A 2 Π u ; B 2 +u →X2Πg], Fluorescence by Vacuum Ultraviolet Radiation’, J. Chem. Phys. 57, 4433.

    Google Scholar 

  • Leovy, C. B.: 1987, ‘Zonal Winds Near Venus’ Cloud Top Level: An Analytic Model of the Equatorial Wind Speed’, Icarus 69, 193.

    Google Scholar 

  • Letzeiter, C., Eideisberg, M., Rostas, F., Breton, J., and Thieblemont, B.: 1987, ‘Photoabsorption and Photodissociation Cross Sections of CO Between 88.5 and 115 nm’, Chem. Phys. 114, 273.

    Google Scholar 

  • Leu, M.-T. and Yung, Y. L.: 1987, ‘Determination of O2(a 1 Δ g and O2(b 1 +g Yields in the Reaction O + ClO → Cl + O2: Implications for Photochemistry in the Atmosphere of Venus’, Geophys. Res. Letters 14, 949.

    Google Scholar 

  • Levine, R. D. and Bernstein, R. B.: 1974, ‘Energy Disposal and Energy Consumption in Elementary Chemical Reactions: An Information Theoretic Approach’, Accts. Chem. Res. 7, 393.

    Google Scholar 

  • Lewis, J. S. and Prinn, R. G.: 1984, Planets and Their Atmospheres: Origin and Evolution, Academic Press, New York.

    Google Scholar 

  • Lin, H.-M., Seaver, M., Tang, K. Y., Knight, A. E. W., and Parmenter, C. S.: 1979, ‘The Role of Intermolecular Potential Well Depths in Collision-Induced State Changes’, J. Chem. Phys. 70, 5442.

    Google Scholar 

  • Lindzen, R. S.: 1981, ‘Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown’, J. Geophys. Res. 86, 9707.

    Google Scholar 

  • Link, R., Gladstone, G. R., Chakrabarti, S., and McConnell, J. C.: 1988, ‘A Reanalysis of Rocket Measurements of the Ultraviolet Dayglow’, J. Geophys. Res. 93, 14631.

    Google Scholar 

  • Liu, S. C. and Donahue, T. M.: 1974a, ‘The Aeronomy of Hydrogen in the Atmosphere of Earth’, J. Atmospheric Sci. 31, 1118.

    Google Scholar 

  • Liu, S. C. and Donahue, T. M.: 1974b, ‘Mesospheric Hydrogen Related to Exospheric Escape Mechanisms’, J. Atmospheric Sci. 31, 1466.

    Google Scholar 

  • Llewellyn, E. J., Solheim, B. H., Witt, G., Stegman, J., and Greer, R. G. H.: 1980, ‘On the Excitation of Oxygen Emissions in the Night Airglow of the Terrestrial Planets’, J. Photochem. 12, 179.

    Google Scholar 

  • Lopez-Gonzales, J., Lopez-Moreno, J., Lopez-Valverde, M. A., and Rodrigo, R.: 1989, ‘Behaviour of the O2 Infrared Atmospheric (0–0) Band in the Middle Atmosphere During Evening Twilight and at Night’, Planetary Space Sci. 37, 61.

    Google Scholar 

  • Lopez-Moreno, J. J., Rodrigo, R., Moreno, F., Lopez-Puertas, M., and Molina, A.: 1988, ‘Rocket Measurements of O2 Infrared Atmospheric System in the Nightglow’, Planetary Space Sci. 36, 459.

    Google Scholar 

  • Lowell, P.: 1894, ‘Mars’, Pop. Astron. 2, 154.

    Google Scholar 

  • Luhmann, J. G. and Kozrya, J. U.: 1990, ‘Dayside Pick-Up Oxygen Ion Precipitation at Venus and Mars: Spatial Distribution, Energy Deposition and Consequences’, J. Geophys. Res. (in press).

  • Marmo, F. and Engelman, A.: 1970, ‘Carbon Atoms in the Upper Atmosphere of Venus’, Icarus 12, 128.

    Google Scholar 

  • McDonald, G. J. G.: 1963, ‘The Escape of Helium from the Earth's Atmosphere’, Rev. Geophys. 1, 305.

    Google Scholar 

  • Massie, S. T., Hunten, D. M., and Sowell, D. T.: 1983, ‘Day and Night Models of the Venus Thermosphere’, J. Geophys. Res. 88, 3955.

    Google Scholar 

  • Mayr, H. G., Harris, I., and Spencer, N. W.: 1978, ‘Some Properties of the Upper Atmosphere Dynamics’, Rev. Geophys. Space Phys. 16, 539.

    Google Scholar 

  • Mayr, H. G., Harris, I., Niemann, H. B., Brinton, H. C., Spencer, N. W., Taylor, H. A., Jr., Hartle, R. E., Hoegy, W. R., and Hunten, D. M.: 1980, ‘Dynamic Properties of the Thermosphere Inferred from Pioneer Venus Mass Spectrometer Measurements’, J. Geophys. Res. 85, 7841.

    Google Scholar 

  • Mayr, H. G., Harris, I., Stevens-Rayburn, D. R., Niemann, H. B., Taylor, H. A., Jr., and Hartle, R. E.: 1985, ‘On the Diurnal Variations in the Temperature and Composition: A Three-Dimensional Model with Superrotation’, Adv. Space Res. 5, 9, 109.

    Google Scholar 

  • Mayr, H. G., Harris, I., Kasprzak, W. T., Dube, M., and Varosi, F.: 1988, ‘Gravity Waves in the Upper Atmosphere of Venus’, J. Geophys. Res. 93, 11247.

    Google Scholar 

  • McClelland, G. M., Saenger, K. L., Valentini, J. J., and Herschbach, D. R.: 1979, ‘Vibratinal and Rotational Relaxation of Iodine in Seeded Supersonic Beams’, J. Phys. Chem. 83, 947.

    Google Scholar 

  • McCoy, R. P.: 1983, ‘Thermospheric Odd Nitrogen, 1. NO, N(4 S), and O(3 P) Densities from Rocket Measurements of NO δ and γ Bands, the O2 Herzberg I Bands’, J. Geophys. Res. 88, 3197.

    Google Scholar 

  • McDade, I. C., Llewellyn, E. J., Greer, R. G. H., and Murtagh, D. P.: 1987, ‘ETON 6: A Rocket Measurement of the O2 Infrared Atmospheric (0–0) Band in the Nightglow’, Planetary Space Sci. 35, 1541.

    Google Scholar 

  • McElroy, M. B.: 1968, ‘The Upper Atmosphere of Venus’, J. Geophys. Res. 73, 1513.

    Google Scholar 

  • McElroy, M. B.: 1969, ‘Structure of the Venus and Mars Atmospheres’, J. Geophys. Res. 74, 29.

    Google Scholar 

  • McElroy, M. B.: 1970, ‘Ionization Processes in the Atmospheres of Venus and Mars’, Ann. Geophys. 26, 643.

    Google Scholar 

  • McElroy, M. B. and McConnell, J. C.: 1971, ‘Atomic Carbon in the Atmospheres of Mars and Venus’, J. Geophys. Res. 76, 6674.

    Google Scholar 

  • McElroy, M. B. and Hunten, D. M.: 1969, ‘The Ratio of Deuterium to Hydrogen in the Venus Atmosphere’, J. Geophys. Res. 74, 115.

    Google Scholar 

  • McElroy, M. B., Prather, M. J., and Rodriguez, J. M.: 1982a, ‘Escape of Hydrogen from Venus’, Science 215, 1614.

    Google Scholar 

  • McElroy, M. B., Prather, M. J., and Rodriguez, J. M.: 1982b, ‘Loss of Oxygen from Venus’, Geophys. Res. Letters 9, 649.

    Google Scholar 

  • McNeal, R. J., Whitson, M. E., and Cook, G. R.: 1974, ‘Temperature Dependence of the Quenching of Vibrationally Excited Nitrogen by Atomic Oxygen’, J. Geophys. Res. 79, 1527.

    Google Scholar 

  • Meier, R. R. and Anderson, D. E.: 1983, ‘Determination of Atmospheric Composition and Temperature from the UV Airglow’, Planetary Space Sci. 31, 967.

    Google Scholar 

  • Meier, R. R., Anderson, D. E., and Stewart, A. I. F.: 1983, ‘Atomic Oxygen Emissions Observed from Pioneer Venus’, Geophys. Res. Letters 10, 214.

    Google Scholar 

  • Meier, R. R., Conway, R. R., Anderson, D. E., Feldman, P. D., Eastes, R. W., Gentieu, E. P., and Christensen, A. B.: 1985, ‘The Ultraviolet Dayglow at Solar Maximum. 3. Photoelectron Excited Emissions of N2 and O’, J. Geophys. Res. 90, 6608.

    Google Scholar 

  • Mengel, J. G., Mayr, H. G., Harris, I., and Stevens-Rayburn, D. R.: 1989, ‘Non-Linear Three-Dimensional Spectral Model of the Venusian Thermosphere with Superrotation. II. Temperature, Composition, and Winds’, Planetary Space Sci. 37, 707.

    Google Scholar 

  • Miller, K. L., Knudsen, W. C., Spenner, K., Whitten, R. C., and Novak, V.: 1980, ‘Solar Zenith Angle Dependence of Ionospheric Ion and Electron Temperatures and Density on Venus’, J. Geophys. Res. 85, 7759.

    Google Scholar 

  • Miller, S. M., Fell, C. P., and Steinfeld, J. I.: 1988, ‘Rate Constants for Quenching of N* by O(3 P)’, EOS (Trans. Am. Geophys. Union) 69, 1347.

    Google Scholar 

  • Moore, C. B., Wood, R. E., Hu, B. L., and Yardley, J. T.: 1967, ‘Vibrational Energy Transfer in CO2 Lasers’, J. Chem. Phys. 46, 4222.

    Google Scholar 

  • Moos, H. W. and Rottman, G. J.: 1971, ‘Oi and Hi emissions from the Upper Atmosphere of Venus’, Astrophys. J. 169, L127.

    Google Scholar 

  • Moos, H. W., Fastie, W. G., and Bottema, M.: 1969, ‘Rocket Measurement of Ultraviolet Spectra of Venus and Jupiter Between 1200 and 1800 Å’, Astrophys. J. 155, 887.

    Google Scholar 

  • Moroz, V. I.: 1963, ‘The Infrared Spectrum of Venus (1–2.5μ)’, Soviet Astron.-AJ 7, 109.

    Google Scholar 

  • Moroz, V. I.: 1968, The CO2 Bands and Some Optical Properties of the Atmosphere over Venus’, Soviet Astron.-AJ 11, 653.

    Google Scholar 

  • Moroz, V. I., Golovin, Yu. M., Ekhonomov, A. P., Moshkin, B. E., Parfent'ev, N. A., and San'ko, N. F.: 1980, Nature 284, 243.

    Google Scholar 

  • Mukhin, L. M., Gel'man, B. G., Lamonov, N. I., Mel'nikov, V. V., Nenarokov, D. F., Okhotnikov, B. P., Rotin, V. A., and Khoklov, V. N.: 1983, ‘Gas-Chromatograph Analysis of the Chemical Composition of the Atmosphere of Venus by the Landers of Venera 13 and Venera 14 Spacecraft’, Kossm. Issled. 21, 225; 1983, Cosmic Res. 21, 168.

    Google Scholar 

  • Mul, P. M. and McGowan, J. W.: 1979, ‘Temperature Dependence of Dissociative Recombination for Atmospheric Ions NO+, O +2 , N +2 ’, J. Phys. B12, 1591.

    Google Scholar 

  • Nagy, A. F., Kim, J., and Cravens, T. E.: 1990, ‘Hot Hydrogen and Oxygen Atoms in the Upper Atmospheres of Venus and Mars’, Ann. Geophys. 8, 251.

    Google Scholar 

  • Nagy, A. F. and Cravens, T. E.: 1988, ‘Hot Oxygen Atoms in the Upper Atmosphere of Venus and Mars’, Geophys. Res. Letters 15, 433.

    Google Scholar 

  • Nagy, A. F., Cravens, T. E., Yee, J.-H., and Stewart, A. I. F.: 1981, ‘Hot Oxygen Atoms in the Upper Atmosphere of Venus’, Geophys. Res. Letters 8, 629.

    Google Scholar 

  • Nakata, R. S., Watanabe, K., and Matsunaga, F. M.: 1965, ‘Absorption and Photoionization Coefficients of CO2 in the Region 580–1970 Å’, Sci. Light 14, 54.

    Google Scholar 

  • Niemann, H. B., Hartle, R. E., Hedin, A. E., Kasprzak, W. T., Spencer, N. W., Hunten, D. M., and Carrigan, G. R.: 1979, ‘Venus Upper Atmosphere Neutral Gas Composition: First Observations of the Diurnal Variations’, Science 205, 54.

    Google Scholar 

  • Niemann, H. B., Booth, J. R., Cooley, J. E., Hartle, R. E., Kasprzak, W. T., Spencer, N. W., and Way, S. H.: 1980a, ‘Pioneer Venus Orbiter Neutral Mass Spectrometer Experiment’, IEEE Trans. Geosci. Remote Sensing GE-18, 60.

    Google Scholar 

  • Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M., and Spencer, N. W.: 1980b, ‘Mass Spectrometer Measurements of the Neutral Gas Composition of the Thermosphere and Exosphere of Venus’, J. Geophys. Res. 85, 7817.

    Google Scholar 

  • Ogawa, H. S. and Judge, D. L.: 1986, ‘Absolute Solar Flux Measurement Shortward of 575 Å’, J. Geophys. Res. 91, 7089.

    Google Scholar 

  • Ogawa, H. S., Phillips, E., and Judge, D. L.: 1984, ‘Line Width of the Solar EUV Hei Resonance Emissions at 584 and 537 Å’, J. Geophys. Res. 89, 7537.

    Google Scholar 

  • Oyama, V. I., Carle, G. C., Woeller, F., Pollack, J. B., Reynolds, R. T., and Craig, R. A.: 1980, ‘Pioneer Venus Gas Chromatography of the Lower Atmosphere of Venus’, J. Geophys. Res. 85, 7891.

    Google Scholar 

  • Parmenter, C. S. and Seaver, M.: 1979, ‘The Temperature Dependence of Collision-Induced State Changes’, Chem. Phys. Letters 67, 279.

    Google Scholar 

  • Partridge, H., Bauschlicher, and Langhoff, S. R.: 1990, J. Chem. Phys. (in press).

  • Paxton, L. J.: 1983, ‘Atomic Carbon in the Venus Thermosphere: Observatins and Theory’, Ph.D. Thesis, University of Colorado, Boulder.

    Google Scholar 

  • Paxton, L. J.: 1985, ‘Pioneer Venus Orbiter Ultraviolet Spectrometer Limb Observations: Analysis and Interpretation of the 166- and 165-nm Data’, J. Geophys. Res. 90, 5089.

    Google Scholar 

  • Paxton, L. J.: 1988, ‘CO +2 and N +2 in the Venus Ionosphere’, J. Geophys. Res. 93, 8473.

    Google Scholar 

  • Paxton, L. J. and Meier, R. R.: 1986, ‘Reanalysis of Pioneer Venus Orbiter Ultraviolet Spectrometer Data: OI 1304 Intensities and Atomic Oxygen Densities’, Geophys. Res. Letters 13, 229.

    Google Scholar 

  • Paxton, L. J., Anderson, D. E., and Stewart, A. I. F.: 1985, ‘The Pioneer Venus Orbiter Ultraviolet Spectrometer: Analysis of Hydrogen Lyman Alpha Data’, Adv. Space Res. 5, 129.

    Google Scholar 

  • Paxton, L. J., Anderson, D. E., and Stewart, A. I. F.: 1988, ‘Analysis of Pioneer Venus Orbiter Ultraviolet Spectrometer Lyman α Data from Near the Subsolar Region’, J. Geophys. Res. 93, 1766; 1988, erratum in J. Geophys. Res. 93, 11551.

    Google Scholar 

  • Pechmann, J. B. and Ingersoll, A. P.: 1984, ‘Thermal Tides in the Atmosphere of Venus: Comparison of Model Results with Observations’, J. Atmospheric Sci. 41, 3290.

    Google Scholar 

  • Phillips, J. L., Stewart, A. I. F., and Luhmann, J. G.: 1986, ‘The Venus Ultraviolet Aurora: Observations at 130.4 nm’, Geophys. Res. Letters 13, 1047.

    Google Scholar 

  • Piper, L. G.: 1989, ‘The Rate Coefficients for Quenching N(2 D) by O(3 P)’, J. Chem. Phys. 91, 3516.

    Google Scholar 

  • Piper, L. G., Donahue, M. E., and Rawlins, W. T.: 1987, ‘Rate Coefficients for N(2 D) Reactions’, J. Phys. Chem. 91, 3883.

    Google Scholar 

  • Porter, H. S., Silverman, S. M., and Tuan, T. F.: 1974, ‘On the Behavior of Airglow Under the Influence of Gravity Waves’, J. Geophys. Res. 79, 3827.

    Google Scholar 

  • Poulson, L. L., Billing, G. D., and Steinfeld, J. I.: 1978, ‘Temperature Dependence of HF Vibrational Relaxation’, J. Chem. Phys. 68, 5121.

    Google Scholar 

  • Prather, M. J. and McElroy, M. B.: 1983, ‘Helium on Venus: Implications for Uranium and Thorium’, Science 228, 410.

    Google Scholar 

  • Prinn, R. G.: 1985, in J. S. Levine (ed.), ‘The Photochemistry of the Atmosphere of Venus’, The Photochemistry of Atmospheres: Earth the Other Planets and Comets, Academic Press, New York, 1985.

    Google Scholar 

  • Quack, M. and Troe, T.: 1977, ‘Vibrational Relaxation of Diatomic Molecules in Complex Forming Collisions with Reactive Atoms’, Ber. Bunsenges. Physik. Chem. 81, 160.

    Google Scholar 

  • Queffelec, J. L., Rowe, B. R., Vallee, F., Gomet, J. C., and Morlais, M.: 1989, ‘The Yield of Metastable Atoms Through Dissociative Recombination of O +2 Ions with Electrons’, J. Chem. Phys. 91, 5335.

    Google Scholar 

  • Revercomb, H. E., Sromovsky, L. A., Suomi, V. E., and Boese, R. W.: 1985, ‘Thermal Net Flux Measurements on the Pioneer Venus Entry Probes’, Adv. Space Res. 5, 81.

    Google Scholar 

  • Roble, R. G., Dickinson, R. E., and Ridley, E. C.: 1982, ‘Global Circulation and Temperature Structure of the Thermosphere with High Latitude Plasma Convection’, J. Geophys. Res. 87, 1599.

    Google Scholar 

  • Roble, R. G., Ridley, E. C., and Dickinson, R. E.: 1987, ‘On the Global Mean Structure of the Thermosphere’, J. Geophys. Res. 92, 8745.

    Google Scholar 

  • Rodriguez, J. M., Prather, M. J., and McElroy, M. B.: 1984, ‘Hydrogen on Venus: Exospheric Distribution and Escape’, Planetary Space Sci. 32, 1235.

    Google Scholar 

  • Rohrbaugh, R. P. and Nisbet, J. S.: 1973, ‘Effect of Energetic Oxygen Atoms on Neutral Density Models’, J. Geophys. Res. 78, 6768.

    Google Scholar 

  • Rosser, W. A., Wood, A. D., and Gerry, E. T.: 1969, ‘Deactivation of Vibrationally Excited Carbon Dioxide (v 3) by Collisions with Carbon Dioxide or with Nitrogen’, J. Chem. Phys. 50, 4996.

    Google Scholar 

  • Rottman, G. J.: 1981, ‘Rocket Measurements of the Solar Spectral Irradiance During Solar Minimum, 1972–1977’, J. Geophys. Res. 86, 6697.

    Google Scholar 

  • Rottman, G. J. and Moos, H. W.: 1973, ‘The Ultraviolet (1200–1900 Å) Spectrum of Venus’, J. Geophys. Res. 78, 8033.

    Google Scholar 

  • Rusch, D. W. and Cravens, T. E.: 1979, ‘A Model of the Neutral and Ion Nitrogen Chemistry in the Daytime Thermosphere of Venus’, Geophys. Res. Letters 6, 791.

    Google Scholar 

  • Russell, C. T., Elphic, R. C., and Slavin, J. A.: 1979, ‘Initial Pioneer Venus Magnetic Field Results: Dayside Observations’, Science 203, 745.

    Google Scholar 

  • Samson, J. A. R. and Gardner, J. L.: 1973, ‘Fluorescence Excitation and Photoelectrons Spectra of CO2 Induced by Vacuum Ultraviolet Radiation Between 185 and 716 Å’, J. Geophys. Res. 78, 3663.

    Google Scholar 

  • Saxon, R. P. and Liu, B.: 1977, ‘Ab Initio Configuration Interaction Study of the Valence States of O2’, J. Chem. Phys. 67, 5432.

    Google Scholar 

  • Schatz, G. C. and Redmon, M. J.: 1981, ‘A Quasi-Classical Trajectory Study of Collisional Excitation in O(3 P) + CO2’, Chem. Phys. 58, 195.

    Google Scholar 

  • Schloerb, F. P., Robinson, S. E., and Irvine, W. M.: 1980, ‘Observations of CO in the Stratosphere of Venus via its J = 0→1 Rotational Transition’, Icarus 43, 121.

    Google Scholar 

  • Schoeberl, M. R. and Strobel, D. F.: 1978, ‘The Zonally Averaged Circulation of the Middle Atmosphere’, J. Atmospheric Sci. 35, 577.

    Google Scholar 

  • Schofield, J. T., Taylor, F. W., and McCleese, D. J.: 1982, ‘The Global Distribution of Water Vapor in the Middle Atmosphere of Venus’, Icarus 52, 263.

    Google Scholar 

  • Schubert, G.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘General Circulation and the Dynamical State of the Venus Atmosphere’, Venus, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Schubert, G. and Walterscheid, R. L.: 1984, ‘Propagation of Small-Scale Acoustic-Gravity Waves in the Venus Atmosphere’, J. Atmospheric Sci. 41, 1202.

    Google Scholar 

  • Schubert, G., Covey, C., Del Genio, A., Elson, L. S., Keating, G., Seiff, A., Young, R. E., Apt, J., Counselman, III, C. C., Kliore, A. J., Limaye, S. S., Revercomb, H. E., Sromovsky, L. A., Suomi, V. E., Taylor, F., Woo, R., and von Zahn, U.: 1980, ‘Structure and Circulation of the Venus Atmosphere’, J. Geophys. Res. 85, 8007.

    Google Scholar 

  • Schwartz, R. N., Slawsky, Z. I., and Herzfeld, K. F.: 1952, ‘Calculation of Vibrational Relaxation Times in Gases’, J. Chem. Phys. 20, 1591.

    Google Scholar 

  • Seaton, M. J. and Osterbrock, D. E.: 1957, ‘Relative On Intensities in Gaseous Nebulae’, Astrophys. J. 66, 125.

    Google Scholar 

  • Seiff, A.: 1982, ‘Dynamical Implications of the Observed Thermal Contrasts in Venus's Upper Atmosphere’, Icarus 51, 574.

    Google Scholar 

  • Seiff, A., Kirk, D. B., Young, R. E., Blanchard, R. C., Findlay, J. T., Kelly, G. M., and Sommer, S. C.: 1980, ‘Measurements of Thermal Structure and Thermal Contrasts in the Atmosphere of Venus and Related Dynamical Observations: Results from the Four Pioneer Venus Probes’, J. Geophys. Res. 85, 7903.

    Google Scholar 

  • Sharma, R. D. and Brau, C. A.: 1969, ‘Energy Transfer in Near-Resonant Molecular Collisions Due to Long-Range Forces with Application to Transfer of Vibrational Energy from v 3 Mode of CO2 to N2’, J. Chem. Phys. 50, 924.

    Google Scholar 

  • Sharma, R. D. and Nadile, R. M.: 1980, ‘Carbon Dioxide (v 2) Radiance Results Using a New Non-Equilibrium Model’, EOS 61, 17, 322.

    Google Scholar 

  • Sharma, R. D. and Nadile, R. M.: 1981, Carbon Dioxide (v 2) Radiance Results Using a New Non-Equilibrium Model, AFGL Tech. Rep. 81–0064, Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass.

    Google Scholar 

  • Simpson, C. J. S. M., Gait, P. D., and Simmie, J. M.: 1977, ‘The Vibrational Deactivation of the Bending Mode of CO2 and by N2, Chem. Phys. Letters 47, 133.

    Google Scholar 

  • Sinton, W. M.: 1963, ‘Infrared Observations of Venus’, Mem. Soc. Roy. Sci. Liège 7, 300.

    Google Scholar 

  • Slanger, T. G.: 1978, ‘Generation of O2(c 1 -3 , C3Δu, A3 -g ) Emission in the Terrestrial Nightglow’, J. Chem. Phys. 69, 4779.

    Google Scholar 

  • Slanger, T. G. and Black, G.: 1976, ‘O(1 S) Production from Oxygen Atom Recombination’, J. Chem. Phys. 64, 3767.

    Google Scholar 

  • Slanger, T. G. and Heustis, D. L.: 1981, ‘O2 c (1 -u → X3 -g ) Emission in the Terrestrial Nightglow’, J. Geophys. Res. 86, 3551.

    Google Scholar 

  • Smith, I. W. M.: 1984, ‘The Role of Electronically Excited States in Recombination Reactions’, Int. J. Chem. Kinet. 16, 423.

    Google Scholar 

  • Spenner, K., Knudsen, W. C., Whitten, R. C., Michelson, P. F., Miller, K. L., and Novak, V.: 1981, ‘On the Maintenance of the Venus Nightside Ionosphere: Electron Precipitation and Plasma Transport’, J. Geophys. 86, 9170.

    Google Scholar 

  • Stair, A. T., Jr., Sharma, R. D., Nadile, R. M., Baker, D. J., and Grieder, W. F.: 1985, ‘Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment’, J. Geophys. Res. 90, 9763.

    Google Scholar 

  • Stewart, A. I.: 1969, paper presented at The Tucson Conference on the Atmosphere of Venus. Quoted in McElroy and Hunten (1969).

  • Stewart, A. I. F.: 1980, ‘Design and Operation of the Pioneer Venus Orbiter Ultraviolet Spectrometer’, IEEE Trans. Geosci. Remote Sensing GE-18, 65.

    Google Scholar 

  • Stewart, A. I.: 1972, ‘Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Implications of CO +2 , CO, and O Airglow’, J. Geophys. Res. 77, 54.

    Google Scholar 

  • Stewart, A. I. and Barth, C. A.: 1979, ‘Ultraviolet Night Airglow of Venus’, Science 205, 59.

    Google Scholar 

  • Stewart, A. I., Anderson, D. E., Esposito, L. W., and Barth, C. A.: 1979, ‘Ultraviolet Spectroscopy of Venus: Initial Results from the Pioneer Venus Orbiter’, Science 203, 777.

    Google Scholar 

  • Stewart, A. I. F., Gerard, J. C., Rusch, D. W., and Bougher, S. W.: 1980, ‘Morphology of the Venus Ultraviolet Night Airglow’, J. Geophys. Res. 85, 7861.

    Google Scholar 

  • Stewart, R. W.: 1968, ‘Interpretation of Mariner 5 and Venera 4 Data on the Upper Atmosphere of Venus’, J. Atmospheric Sci. 25, 578.

    Google Scholar 

  • Stewart, R. W. and Hogan, J. S.: 1969, ‘Empirical Determination of Heating Efficiencies in the Mars and Venus Atmospheres’, J. Atmospheric Sci. 26, 330.

    Google Scholar 

  • Stone, E. J. and Zipf, E. C.: 1974, ‘Electron Impact Excitation of the 3 S 0 and 5 S 0 States of Atomic Oxygen’, J. Chem. Phys. 60, 4237.

    Google Scholar 

  • Stoney, G. J.: 1868, ‘On the Physical Constitution of the Sun and Stars’, Proc. Roy. Soc. London 17, 1.

    Google Scholar 

  • Stoney, G. J.: 1898, ‘Of Atmospheres Upon Planets and Satellites’, Trans. Roy. Soc. Dublin 6, 305; reprinted in 1898: Astrophys. J. 7, 25.

    Google Scholar 

  • Strickland, D. J.: 1973, ‘The Oi 1304- and 1356-Å Emissions from the Atmosphere of Venus’, J. Geophys. Res. 78, 2827.

    Google Scholar 

  • Strickland, D. J., Thomas, G. E., and Sparks, P. R.: 1972, ‘Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Analysis of the Oi 1304- and 1356-Å Emissions’, J. Geophys. Res. 77, 4052.

    Google Scholar 

  • Surkov, Yu. A., Shchelgov, O. P., Ryvkin, M. L., Sheinin, D. M., and Davydov, N. A.: 1988, ‘Water Vapor Distribution in the Middle and Lower Venusian Atmosphere’, Kossm. Issled. 25, 678; 1988: Cosmic Res. 25, 517.

    Google Scholar 

  • Sze, N. F. and McElroy, M. B.: 1975, ‘Some Problems in Venus Aeronomy’, Planetary Space Sci. 23, 763.

    Google Scholar 

  • Takacs, P. Z., Broadfoot, A. L., Smith, G. R., and Kumar, S.: 1980, ‘Mariner 10 Observations of Hydrogen Lyman-α Emission from the Venus Exosphere: Evidence of Complex Structure’, Planetary Space Sci. 28, 687.

    Google Scholar 

  • Taylor, F. W., Diner, D. J., Elson, L. S., Hanner, M. S., McCleese, D. J., Martonchik, J. V., Reichley, P. E., Houghton, J. T., Delderfield, J., Schofield, T., Bradley, S. E., and Ingersoll, A. P.: 1979, ‘Infrared Remote Sounding of the Middle Atmosphere of Venus from Pioneer Venus Orbiter’, Science 203, 779.

    Google Scholar 

  • Taylor, F. W., Beer, R., Chahive, M. T., Diner, D. J., Elson, L. S., Haskins, R. D., McCleese, D. J., Martonchik, J. V., Reichley, P. E., Bradley, S. P., Delderfield, J., Schofield, J. T., Farmer, C.B., Froidevaux, L., Leung, J., Cofley, M. T., and Gille, J. C.: 1980, ‘Structure and Meteorology of the Middle Atmosphere of Venus: Infrared Remote Sensing from the Pioneer Orbiter’, J. Geophys. Res. 85, 7963.

    Google Scholar 

  • Taylor, H. A., Jr., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., and Daniell, R. E., Jr.: 1980, ‘Global Observations of the Composition and Dynamics of the Ionosphere of Venus: Implications forSolar Wind Interaction’, J. Geophys. Res. 85, 7765.

    Google Scholar 

  • Taylor, H. A., Jr., Brinton, H. C., Niemann, H. B., Mayr, H. G., Hartle, R. E., Barnes, A., and Larson, J.: 1984, ‘Interannual and Short-Term Variations of the Venus Nighttime Hydrogen Bulge’, J. Geophys. Res. 89, 10669.

    Google Scholar 

  • Taylor, H. A., Brinton, H., Niemann, H. B., Mayr, H. G., Hartle, R., Barnes, A., and Larson, J.: 1985, ‘In Situ Results on the Variation of Neutral Atmospheric Hydrogen at Venus’, Adv. Space Res. 5, 125.

    Google Scholar 

  • Taylor, M. J., Hapgood, M. A., and Rothwell, P.: 1987, ‘Observations of Gravity Wave Propagation in the Oi (555.7 nm), Na (589.2 nm) and the Near Infrared OH Nightglow Emissions’, Planetary Space Sci. 35, 413.

    Google Scholar 

  • Thomas, R. J.: 1981, ‘Analysis of Atomic Oxygen Emissions in the Airglow of the Terrestrial Planets’, J. Geophys. Res. 86, 206.

    Google Scholar 

  • Tobiska, W. K., Barth, C. A., and Culp, R. D.: 1988, ‘Use of Solar Lyman-α and 1–8 Å X-Rays as EUV Flux Indices’, A.I.A.A. (preprint).

  • Torr, M. R. and Torr, D. G.: 1985, ‘Ionization Frequencies for Solar Cycle 21: Revised’, J. Geophys. Res. 90, 6675.

    Google Scholar 

  • Torr, M. R., Torr, D. G., Ong, R. A., and Hinteregger, H. E.: 1979, ‘Ionization Frequencies for Major Thermospheric Constituents as a Function of Solar Cycle 21’, Geophys. Res. Letters 6, 771.

    Google Scholar 

  • Torr, M. R., Torr, D. G., and Hinteregger, H. E.: 1980, ‘Solar Flux Variability in the Schumann-Runge Continuum as a Function of Solar Cycle 21’, J. Geophys. Res. 85, 6063.

    Google Scholar 

  • Traub, W. A. and Carleton, N. P.: 1974, in A. Woszczyk and C. Iwaniszewska (eds.), ‘Observations of O2, H2O, and HD in Planetary Atmospheres’, Exploration of Planetary Atmospheres, D. Reidel Publ. Co., Dordrecht, Holland, p. 223.

    Google Scholar 

  • Trauger, J. T. and Lunine, J. I.: 1983, ‘Spectroscopy of Molecular Oxygen in the Atmospheres of Venus and Mars’, Icarus 55, 272.

    Google Scholar 

  • Ustinov, E. A. and Moroz, V. I.: 1978, ‘Refinement of the H2O Content Value in the Atmosphere of Venus with Narrow-Band Photometry Data from Venera 9 and Venera 10’, Kossm. Issled. 16, 127; 1978: Cosmic Res. (Engl. transl.) 16, 98.

    Google Scholar 

  • van Dishoeck, E. F. and Black, J. H.: 1988, ‘The Photodissociation and Chemistry of Interstellar CO’, Astrophys. J. 334, 771.

    Google Scholar 

  • Vaughan, S. O. and Doering, J. P.: 1986, ‘Absolute Experimental Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen. 2. The (3 P3 S 0) Transition (1304 Å) from 16.5 to 200 eV with Comparison to Atomic Hydrogen’, J. Geophys. Res. 91, 13755.

    Google Scholar 

  • Vinogradov, A. P., Surkov, U. A., and Florensky, C. P.: 1968, ‘The Chemical Composition of the Venus Atmosphere Based on the Data of the Interplanetary Station Venera 4’, J. Atmospheric Sci. 25, 535.

    Google Scholar 

  • Vinogradov, A. P., Surkov, Yu. A., Andreichikov, B. M., Kalinkina, O. M., and Grechischeva, I. M.: 1971, in C. Sagan, T. C. Owen, and H. J. Smith (eds.), ‘The Chemical Composition of the Atmosphere of Venus’, Planetary Atmospheres, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • von Zahn, U.: 1977, ‘Bus Neutral Mass Spectrometer (BNMS)’, Space Sci. Rev. 20, 451.

    Google Scholar 

  • von Zahn, U. and Moroz, V. I.: 1986, ‘Composition of the Venus Atmosphere Below 100 km Altitude’, Adv. Space Res. 5, 173.

    Google Scholar 

  • von Zahn, U., Krankowsky, D., Mauersberger, K., Nier, A. O., and Hunten, D. M.: 1979, ‘Venus Thermosphere: In Situ Composition Measurements, the Temperature Profile, and the Homopause Altitude’, Science 203, 768.

    Google Scholar 

  • von Zahn, U., Fricke, K. H., Hunten, D. M., Krankowsky, D., Mauersberger, K., and Nier, A. O.: 1980, ‘The Upper Atmosphere of Venus During Morning Conditions’, J. Geophys. Res. 85, 7892.

    Google Scholar 

  • von Zahn, U., Kumar, S., Niemann, H., and Prinn, R.: 1983, in D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz (eds.), ‘Composition of the Venus Atmosphere’, Venus, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Walker, J. C. G.: 1977, Evolution of the Atmosphere, MacMillan, New York.

    Google Scholar 

  • Walker, J. C. G.: 1982, ‘The Earliest Atmosphere of the Earth’, Precambrian Res. 17, 147.

    Google Scholar 

  • Wallace, L.: 1969, ‘Analysis of the Lyman-Alpha Observations of Venus Made from Mariner 5’, J. Geophys. Res. 74, 115.

    Google Scholar 

  • Wallace, L., Stuart, F. E., Nagel, R. H., and Larson, D. M.: 1971, ‘A Search for Deuterium on Venus’, Astrophys. J. 168, L29.

    Google Scholar 

  • Wallis, M. K.: 1972, ‘Comet-Like Interaction of Venus with the Solar Wind. I’, Cosmic Electrodyn. 3, 45.

    Google Scholar 

  • Wallis, M. K.: 1978, ‘Exospheric Density and Escape Fluxes of Atomic Isotopes on Venus and Mars’, Planetary Space Sci. 26, 949.

    Google Scholar 

  • Wallis, M. K.: 1982, ‘Comet-Like Interaction of Venus with the Solar Wind. III. The Atomic Oxygen Corona’, Geophys. Res. Letters 9, 427.

    Google Scholar 

  • Walterscheid, R. L., Schubert, G., Newman, M., and Kliore, A. J.: 1985, ‘Zonal Winds and the Angular Momentum Balance of Venus’ Atmosphere Within and Aboye the Clouds’, J. Atmospheric Sci. 42, 1982.

    Google Scholar 

  • Waterston, J. J.: 1846, Proc. Roy. Soc. London 5, 604.

    Google Scholar 

  • Waterston, J. J.: 1892, Phil. Trans. Roy. Soc. (London) A183, 1.

    Google Scholar 

  • Watson, A. J., Donahue, T. M., and Walker, J. C. G.: 1981, ‘The Dynamics of Rapidly Escaping Atmosphere: Applications to the Evolution of Earth and Venus’, Icarus 48, 150.

    Google Scholar 

  • Watson, A. J., Donahue, T. M., and Kuhn, W. R.: 1984, ‘Temperatures in a Runaway Greenhouse on the Evolving Venus: Implications for Water Loss’, Earth Planetary Sci. Letters 68, 1.

    Google Scholar 

  • Wauchop, T. S. and Broida, H. P.: 1972, ‘Lifetime and Quenching of CO(a 2 Π), Produced by Recombination of CO2 Ions in a Helium Afterglow’, J. Chem. Phys. 56, 330.

    Google Scholar 

  • Wells, W. C., Borst, W. L., and Zipf, E. C.: 1972, ‘Production of CO(a 3 Π) and Other Metastable Fragments by Electron Impact Dissociation of CO2’, Planetary Space Sci. 31, 317.

    Google Scholar 

  • Wilson, W. J., Klein, M. J., Kakar, R. K., Gulkis, S., Olsen, E. T., and Ho, P. T. P.: 1981, ‘Venus. I. Carbon Monoxide Distribution and Molecular-Line Searches’, Icarus 45, 624.

    Google Scholar 

  • Wintersteiner, P. P., Sharma, R. D., Winick, J. R., and Picard, R.: 1988, ‘Determination of CO2(v 2) Vibrational Temperature Using a New Line-by-Line Radiative Transfer Algorithm’, EOS (Trans. Am. Geophys. Union) 69, 1346.

    Google Scholar 

  • Wraight, P. C.: 1982, ‘Association of Atomic Oxygen and Airglow Excitation Mechanisms’, Planetary Space Sci. 30, 251.

    Google Scholar 

  • Yardley, J. T.: 1980, Introduction to Molecular Energy Transfer, Academic Press, New York.

    Google Scholar 

  • Yatteau, J. H.: 1983, ‘Some Issues Related to the Evolution of Planetary Atmospheres’, Ph.D. Thesis, Harvard University, Cambridge, MA.

    Google Scholar 

  • Yee, J.-H. and Hays, P. B.: 1980, ‘The Oxygen Polar Corona’, J. Geophys. Res. 85, 1795.

    Google Scholar 

  • Yee, J.-H. and Killeen, T. L.: 1986, ‘Thermospheric Production of O(1 S) by Dissociative Recombination of Vibrationally Excited O +2 ’, Planetary Space Sci. 34, 1101.

    Google Scholar 

  • Yee, J.-H., Meriwether, J. W., and Hays, P. B.: 1980, ‘Detection of a Corona of Fast Oxygen Atoms During Solar Maximum’, J. Geophys. Res. 85, 3396.

    Google Scholar 

  • Yoshino, K., Stark, G., Smith, P. L., Parkinson, W. H., and Ito, K.: 1988, ‘High Resolution Spectra and Photoabsorption Coefficients for Carbon Monoxide Absorption Bands Between 94.0 and 100.4 nm’, J. Physique 49, C1–37.

    Google Scholar 

  • Young, L. D. G.: 1972, ‘High Resolution Spectra of Venus’, Icarus 17, 632.

    Google Scholar 

  • Yung, Y. L. and DeMore, W. B.: 1982, ‘Photochemistry of the Stratosphere of Venus: Implications for Atmospheric Evolution’, Icarus 51, 199.

    Google Scholar 

  • Zahnle, K. L. and Kasting, J. F.: 1986, ‘Mass Fractionation During Transonic Escape and Implications for Loss of Water from Mars and Venus’, Icarus 68, 462.

    Google Scholar 

  • Zipf, E. C.: 1970, ‘The Dissociative Recombination of O +2 Ions into Specifically Identified States’, Bull. Am. Phys. Soc. 15, 498.

    Google Scholar 

  • Zipf, E. C.: 1986, ‘On the Direct and Dissociative Excitation of the O(3s 3 S 0) State by Electron Impact on Atomic and Molecular Oxygen’, J. Phys. B19, 2199.

    Google Scholar 

  • Zipf, E. C. and Erdman, P. W.: 1985, ‘Electron Impact Excitation of Atomic Oxygen: Revised Cross Sections’, J. Geophys. Res. 90, 11087.

    Google Scholar 

  • Zipf, E. C. and Stone, E. J.: 1971, ‘Photoelectron Excitation of Atomic-Oxygen Resonance Radiation in the Terrestrial Nightglow’, J. Geophys. Res. 26, 6865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J.L., Bougher, S.W. Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci Rev 55, 357–489 (1991). https://doi.org/10.1007/BF00177141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00177141

Keywords

Navigation