Skip to main content
Log in

Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We examine ways of testing for the reliability of inference from biological sequence data using sequences from Xiphophorus fishes and newly implemented methodology for sequence analysis. The approach we take provides one means to examine the fit between model and data for different sequences and hence to evaluate heterogeneity between data sets. In the case of the present study we show D-loop sequences to be a better molecule for studying the phylogeny of Xiphophorus fishes than cytochrome b sequences. The results of the split decomposition and spectral analysis confirm an earlier phylogenetic hypothesis which had been based on maximum parsimony, neighbor-joining, maximum likelihood analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC (1994) Why one-kilobase sequences from mitochondrial DNA fail to solve the hoatzin phylogenetic enigma. Mol Phyl Evol 3:175–184

    Google Scholar 

  • Bandelt H-J, Dress AWM (1992) A canonical decomposition theory for metrics on a finite set. Adv Math 92:47–105

    Google Scholar 

  • Basolo AL (1990) Female preferences predates the evolution of swords in swordtail fish. Science 250:808–810

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Felsenstein J (1993) PHYLIP3.5 (available from joe@genetics. washington.edu). University of Washington, Seattle, WA

    Google Scholar 

  • Golding B (1993) Maximum-likelihood estimates of selection coefficients from DNA sequence data. Evolution 47:1420–1431

    Google Scholar 

  • Goldman N (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198

    Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309

    Google Scholar 

  • Hendy MD, Penny D (1993) Spectral analysis of phylogenetic data. J Classification 10:5–24

    Google Scholar 

  • Hendy MD, Penny D, Steel MA (1994) A discrete Fourier analysis for evolutionary trees. Proc Natl Acad Sci USA 91:3339–3343

    Google Scholar 

  • Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogenies. Science 264:671–677

    Google Scholar 

  • Huelsenbeck JP, Swofford DL, Cunningham C, Bull JJ, Waddell PJ (1994) Is character weighting a panacea for the problem of data heterogeneity in phylogenetic analysis? Syst Biol 43:288–291

    Google Scholar 

  • Huson D, Wetzel R. (1994) SPLITSTREE V1.0 (available from huson or wetzel@mathematik.uni-bielefeld.de) University of Bielefeld

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, PA 16802

    Google Scholar 

  • Lake J (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91:1455–1459

    CAS  PubMed  Google Scholar 

  • Lento GM, Hickson RE, Chambers GK, Penny D (1995) Use of spectral analysis to test hypotheses on the origin of pinnipeds. Mol Biol Evol 12:2852

    Google Scholar 

  • Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD (1992) Controversy on chloroplast origins. FEBS Lett 301: 127–131

    Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    Google Scholar 

  • Meyer A, Morrissey JM, Schartl M (1994) Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368:539–542

    Google Scholar 

  • Meyer A (1993) Evolution of mitochondrial DNA in fishes. In: Hochachka P, Mommsen P (eds) Biochemistry and molecular biology of fishes, vol 2. Elsevier, pp 1-38

  • Meyer A (1994a) Shortcomings of the cytochrome b genes as a molecular marker. Trends Ecol Evol 9:278–280

    Google Scholar 

  • Meyer A (1994b) DNA technology and phylogeny of fish: molecular phylogenetic studies of fish. In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, pp 219–249

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    Google Scholar 

  • Penny D, Watson EE, Hickson RE, Lockhart PJ (1993) Some recent progress with methods for evolutionary trees. N Z J Botany 31: 275–288(PREPARE and HADTREE available from FARSIDE@ massey.ac.nz)

    Google Scholar 

  • Penny D, Lockhart PJ, Steel MA, Hendy MD (1994) The role of models in reconstructing evolutionary trees. In: Scotland RW, Siebert DJ, Williams DM, (eds) Models in phylogeny reconstruction. Clarendon Press, Oxford, pp 52, 211–230

    Google Scholar 

  • Pomianskowski A (1994) Swordplay and sensory bias. Nature 368: 494–495

    Google Scholar 

  • Rauchenberger M, Kallman KD, Morizot DC (1990) Monophyly and geography of the Rio Panuco basin swordtails (genus Xiphophorus) with descriptions of four new species. Am Mus Nat Hist Novitater 2975:1–41

    Google Scholar 

  • Rosen DE (1979) Fishes from the upland and intermontane basin of Guatemala: revisionary studies and comparative geography. Bull Am Mus Nat Hist 162:268–375

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shaw K (1995) Phylogenetic tests of the sensory exploitation model of sexual selection. Trends Ecol Evol 10:117–120

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flock P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase reaction primers. Ann Entomol Sue Am 87:651–701

    Google Scholar 

  • Steel MA, Lockhart PJ, Penny D (1993a) Confidence in evolutionary trees from biological sequence data. Nature 364:440–442

    Google Scholar 

  • Steel MA, Hendy MD, Penny D (1993b) Parsimony can be consistent! Syst Biol 42:581–587

    Google Scholar 

  • Steel MA (1994) Recovering a tree from the leaf colourations it generates under a Markov model. Appl Math Lett 7:19–24

    Google Scholar 

  • Swofford DL (1993) Phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Takezaki N, Nei M (1994) Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. J Mol Evol 39:210–218

    Google Scholar 

  • Yang Z, Goldman N, Friday (1994) Comparison of models for nucleotide substitutions used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11:316–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A. Meyer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, P.J., Penny, D. & Meyer, A. Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis. J Mol Evol 41, 666–674 (1995). https://doi.org/10.1007/BF00175825

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175825

Key words

Navigation