Skip to main content
Log in

Nucleotide sequence of the histone gene cluster in the coral acropora formosa (cnidaria; scleractinia): Features of histone gene structure and organization are common to diploblastic and triploblastic metazoans

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We report the nucleotide sequence of the core histone gene cluster from the Cnidarian Acropora formosa. This is the first histone gene cluster to be sequenced from a diploblastic organism and the predicted amino acid sequences most resemble those of sea urchin equivalents. Each of the Cnidarian histone genes has two conserved regions 3′ of the coding sequences and these closely resemble those of the metazoan a-class histone genes. In A. formosa the core histone genes are arranged as opposed (H3/H4 and H2A/H2B) pairs, a pattern common to the nondeuterostome metazoa, and tandem repetition is the predominant pattern of organization in the Cnidarian. With the recent identification of several classes of homeobox genes in Cnidarians these features clearly align the Cnidaria with triploblastic metazoans, supporting a monophyletic origin of the metazoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DT (1982) Origins and relationships among the animal phyla. Proc Linn Soc NSW 106: 151–166

    Google Scholar 

  • Aragay AM, Fernandez-Busquets X, Daban J (1991) Different mechanisms for in vitro formation of nucleosome core particles. Biochem 30: 5022–5032

    Google Scholar 

  • Bergstrom J (1991) The early evolution of metazoa and the significance of problematic taxa. (Proc Int Symp Univ Camerino 27–31 March 1989). Cambridge University Press, Cambridge, 23 pp

    Google Scholar 

  • Boseman-Roberts S, Emmons SW, Childs G (1989) Nucleotide sequences of Caenorhabditis elegans core histone genes. Genes for different histone classes share common flanking sequence elements. J Mol Biol 206: 567–577

    Google Scholar 

  • Boseman-Roberts S, Sanicola M, Emmons SW, Childs G (1987) Molecular characterization of the histone gene family on Caenorhabditis elegans. J Mol Biol 196: 27–38

    Google Scholar 

  • Britten RJ, Davidson EH (1971) Repetitive and non repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart Rev Biol 46: 111–133

    Google Scholar 

  • Brunk CF, Kahn RW, Sadler LA (1990) Phylogenetic relationships among Tetrahymena species determined using the polymerase chain reaction. J Mol Evol 30: 290–297

    Google Scholar 

  • Cavalier-Smith T (1989) Archaebacteria and archezoa. Nature 339: 100–101

    Google Scholar 

  • Christen R, Ratto A, Baroin A, Perasso R, Grell KG, Adoutte A (1991) An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO J 10: 499–503

    Google Scholar 

  • Cool D, Banfield D, Honda BM, Smith MJ (1988) Histone genes in three sea star species: cluster arrangement, transcriptional polarity, and analyses of the flanking regions of H3 and H4 genes. J Mol Evol 27: 36–44

    Google Scholar 

  • Davis LG, Dibner MD, Battey JF (1986) Basic methods in molecular biology. Elsevier, New York, NY

    Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Ann Rev Genet 22: 521–565

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753

    CAS  PubMed  Google Scholar 

  • Ghiselin MT (1989) Summary of our present knowledge of metazoan phylogeny. In: Fernholm B, Bremer K, Jornvall H (eds) The heirachy of life. Elsevier Science, Amsterdam, pp 263–272

    Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky, Z (ed) Coral reef ecosystems. Chapter 7, Elsevier, Amsterdam

    Google Scholar 

  • Harvey RP, Robins AJ, Wells JRE (1982) Independently evolving chicken histone H2B genes: identification of a ubiquitous H213-specific 5′ element. Nucleic Acids Res 10: 7851–7863

    Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152: 232–238

    Google Scholar 

  • Henikoff S (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol 155: 156–165

    Google Scholar 

  • Hereford LM, Fahmer K, Woolford J Jr, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18: 1261–1271

    Google Scholar 

  • Howell AM, Cool D, Hewitt J, Ydenberg B, Smith MJ, Honda BM (1987) Organization and unusual expression of histone genes in the sea star Pisaster ochraceus. J Mol Evol 25: 29–36

    Google Scholar 

  • Hyman LH (1940) The invertebrates: Protozoa through Ctenopora. McGraw-Hill, New York, NY

    Google Scholar 

  • John B, Miklos GLG (1988) The eukaryote genome in development and evolution. Allen and Unwin, London

    Google Scholar 

  • Lake JA (1990) Origin of the Metazoa. Proc Natl Acad Sci USA 87: 763–766

    Google Scholar 

  • Lake JA (1991) Tracing origins with molecular sequences: metazoan and eukaryotic beginnings. TIBS 16: 46–50

    Google Scholar 

  • Lifton RP, Goldberg ML, Karp RW, Hogness DS (1977) The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harbor, Symp Quant Biol 42: 1047–1051

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York, NY

    Google Scholar 

  • Miles A, Miller DJ (1992) Genomes of diploblastic organisms contain homeoboxes: sequence of eveC, an even-skipped homolog from the cnidarian Acropora formosa. Proc R Soc Lond (Series B) 248: 159–161

    Google Scholar 

  • McMillan J, Yellowlees D, Heyward A, Harrison P, Miller DJ (1988) Preparation of high molecular weight DNA from hermatypic corals and its use for DNA hybridization and cloning. Mar Biol 98: 271–276

    Google Scholar 

  • Miller DJ, McMillan J, Miles A, ten Lohuis M, Mahony T (1990) Nucleotide sequence of the histone H3-encoding gene from the scleractinian coral Acropora formosa (Cnidaria: Scleractinia). Gene 93: 319–320

    Google Scholar 

  • Muller K, Lindauer A, Bruderlein M, Schmitt R (1990) Organisation and transcription of Volvox histone-encoding genes: similarities between algal and animal genes. Gene 93: 167–175

    Google Scholar 

  • Muller K, Schmitt R (1988) Histone genes of Volvox carteri: DNA sequence and organisation of two H3-H4 gene loci. Nucleic Acids Res 16: 4121–4137

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    CAS  PubMed  Google Scholar 

  • Schaffner W, Kunz G, Daetwyler H, Telford J, Smith HO, Birnsteil ML (1978) Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 14: 655–671

    Google Scholar 

  • Schaufele F, Gilmartin GM, Bannwarth W, Birnstiel ML (1986) Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature 323: 777–781

    Google Scholar 

  • Schummer M, Scheurlen I, Schaller C, Galliot B (1992) HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO J 11: 1815–1823

    Google Scholar 

  • Schumperli D (1988) Multilevel regulation of replicationdependent histone genes. Trends Genet 4: 187–191

    Google Scholar 

  • Sellos D, Krawetz SA, Dixon GH (1990) Organization and complete nucleotide sequence of the core-histone gene cluster of the annelid Platynereis dumerilii. Eur J Biochem 190: 21–29

    Google Scholar 

  • Smith MM, Andresson OS (1983) The sequences of yeast H3 and H4 histone genes from two non-allelic gene sets encode identical H3 and H4 proteins. J Mol Biol 169: 663–690

    Google Scholar 

  • Sturm RA, Dalton S, Wells JRE (1988) Conservation of histone H2A/H2B intergene regions: a role for the H2B specific element in divergent transcription. Nucleic Acids Res 16: 8571–18586

    Google Scholar 

  • Tabor S, Richardson, CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84: 4767–4771

    Google Scholar 

  • Wells D, Bains W, Kedes L (1986) Codon usage in histone gene families of higher eukaryotes reflects functional rather than phylogenetic relationships. J Mol Evol 23: 224–241

    Google Scholar 

  • Wells D, Brown D (1991) Histone and histone gene compilation and alignment update. Nucleic Acids Res 19 (Suppl): 2173–2188

    Google Scholar 

  • Woudt LP, Pastink A, Kempers-Veenstra AE, Jansen AEM, Mager WH, Planta RJ (1983) The genes coding for histone H3 and H4 in Neurospora crassa are unique and contain intervening sequences. Nucleic Acids Res 11: 5347–5360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D., Harrison, P., Mahony, T. et al. Nucleotide sequence of the histone gene cluster in the coral acropora formosa (cnidaria; scleractinia): Features of histone gene structure and organization are common to diploblastic and triploblastic metazoans. J Mol Evol 37, 245–253 (1993). https://doi.org/10.1007/BF00175501

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175501

Key words

Navigation