Skip to main content
Log in

Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In shake-flask culture, Methylobacterium extorquens accumulated poly(3-hydroxybutyrate) (PHB) possessing a substantially higher weight-average molecular mass (MW) than previously reported for this organism. The MW of PHB produced by M. extorquens was dependent on the initial concentration of methanol or sodium succinate, used as sole carbon sources. The highest MW values (0.6 and 1.7 × 106) were obtained with low initial concentrations of methanol or sodium succinate (4.0 and 3.0 g l−1, respectively) and the latter substrate always yielded PHB of higher MW than that produced from methanol. Thus PHB with an MW in the range 0.2–1.7 × 106 could be produced by selection of the carbon source and its concentration. In contrast to the findings with M. extorquens, the MW of PHB produced by Alcaligenes eutrophus was high (1.1–1.6 × 106) and generally unaffected by the choice or concentration of the carbon source. The use of glycerol as sole carbon source did, however, result in the accumulation of PHB with a markedly lower MW (5.5–8.5 × 105) than that produced from other sole carbon sources by this organism under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AJ, Haywood GW, Williams DR, Dawes EA (1990) The production of polyhydroxyalkanoates from unrelated carbon sources. In: Dawes EA (ed) Proceedings of the NATO Advanced Research Workshop on New Biosynthetic Biodegradable Polymers of Industrial Interest from Microorganisms, 26–31 May 1990, Sitges, Spain. Kluwer, Dordrecht, pp 119–129

    Google Scholar 

  • Anderson AJ, Williams DR, Taidi B, Dawes EA, Ewing DF (1992) Studies on copolyester synthesis by Rhodococcus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated by Methylobacterium extorquens and Alcaligenes eutrophus. FEMS Microbiol Rev 103:93–102

    Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  • babel W (1992) Peculiarities of methylotrophs concerning overflow metabolism, especially the synthesis of polyhydroxyalkanoates. FEMS Microbiol Rev 103:141–148

    Google Scholar 

  • Ballard DGH, Holmes PA, Senior PJ (1987) Formation of polymers of ß-hydroxybutyric acid in bacterial cells and a comparison of the morphology of growth with the formation of polyethylene in the solid state. In: Fontanille M, Guyot A (eds) Recent advances in mechanistic and synthetic aspects of polymerization, NATO ASI ser., ser. C215, vol 215. Reidel (Kluwer) Publishing, Lancaster, UK, pp 293–314

    Google Scholar 

  • Berger E, Ramsay BA, Ramsay JA, Chavarie C (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3:227–232

    Google Scholar 

  • Bourque D, Quellette B, André G, Groleau D (1992) Production of poly-ß-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens. Appl Microbiol Biotechnol 37:7–12

    Google Scholar 

  • Bousfield IJ, Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole and Hanson) Emend. Green and Bousfield 1983. Int J Syst Bacteriol 35:209

    Google Scholar 

  • Bradel R, Kleinke A, Reichert K-H (1989) Molecular weight of bacterially produced poly-d(−)-3-hydroxybutyrate. DECHEMA Biotechnol Conf 3:207–209

    Google Scholar 

  • Bradel R, Kleinke A, Reichert K-H (1991) Molar mass distribution of microbial poly(d(−)-3-hydroxybutyrate) in the course of intracellular synthesis and degradation. Makromol Chem Rapid Commun 12:583–590

    Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(ß-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-ß-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol 6:29–37

    Google Scholar 

  • Collins SH (1987) Choice of substrate in polyhydroxybutyrate synthesis. In: Stowell JD, Beardsmore AJ, Keevil CW, Woodward JR (eds) Carbon substrates in biotechnology. (Special publications of the Society for General Microbiology, vol 21) IRL Press, Oxford, pp 161–168

    Google Scholar 

  • Daniel M, Choi JH, Kim JH, Lebault JM (1992) Effect of nutrient deficiency on accumulation and relative molecular weight of poly-ß-hydroxybutyric acid by methylotrophic bacterium, Pseudomonas 135. Appl Microbiol Biotechnol 37:702–706

    Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Hanaham DJ, Olley JN (1958) Chemical nature of monophosphoinositides. J Biol Chem 231:813–828

    Article  CAS  PubMed  Google Scholar 

  • Hardy GA, Dawes EA (1985) Effect of oxygen concentration on the growth and respiratory efficiency of Acinetobacter calcoaceticus. J Gen Microbiol 131:855–864

    Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbon substrates by Pseudomonas sp. strain NCIMB 40 135. Appl Environ Microbiol 56:3354–3359

    Google Scholar 

  • Holmes PA (1988) Biologically produced (R)-3-hydroxyalkanoate polymers and copolymers. In: Bassett DC (ed) Developments in crystalline polymers, volume 2. Elsevier, Barking, UK, pp 1–65

    Google Scholar 

  • Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329

    Google Scholar 

  • Odian G (1981) Principles of polymerization. Wiley, New York

    Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Novel materials from biological sources. Macmillan, Basingstoke, UK, pp 123–213

    Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986a) Mass production of poly-ß-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl Microbiol Biotechnol 23:322–329

    Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986b) Kinetics and effect of nitrogen source feeding on production of poly-ß-hydroxybutyric acid by fed-batch culture. Appl Microbiol Biotechnol 24:366–369

    Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986c) Mass production of poly-ß-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374

    Google Scholar 

  • Suzuki T, Deguchi H, Yamane T, Shimizu S, Gekko K (1988) Control of molecular weight of poly-ß-hydroxybutyric acid produced in fed-batch culture of Protomonas extorquens. Appl Microbiol Biotechnol 27:487–491

    Google Scholar 

  • Ueda S, Matsumoto S, Takagi A, Yamane T (1992a) Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alcohol by the methylotrophic bacteria Paracoccus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 58:3574–3579

    Google Scholar 

  • Ueda S, Matsumoto S, Takagi A, Yamane T (1992b) n-Amyl alcohol as a substrate for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacteria. FEMS Microbiol Lett 98:57–60

    Google Scholar 

  • Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A. J. Anderson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taidi, B., Anderson, A.J., Dawes, E.A. et al. Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus . Appl Microbiol Biotechnol 40, 786–790 (1994). https://doi.org/10.1007/BF00173975

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173975

Keywords

Navigation