Skip to main content
Log in

The Giardia lamblia actin gene and the phylogeny of eukaryotes

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The single-copy actin gene of Giardia lamblia lacks introns; it has an average of 58% amino acid identity with the actin of other species; and 49 of its amino acids can be aligned with the amino acids of a consensus sequence of heat shock protein 70. Analysis of the potential RNA secondary structure in the transcribed region of the G. lamblia actin gene and of the single-copy actin gene of nine other species did not reveal any conserved structures. The G. lamblia actin sequence was used to root the phylogenetic trees based on 65 actin protein sequences from 43 species. This tree is congruent with small-subunit rRNA trees in that it shows that oomycetes are not related to higher fungi; that kinetoplatid protozoans, green plants, fungi and animals are monophyletic groups; and that the animal and fungal lineages share a more recent common ancestor than either does with the plant lineage. In contrast to smalls-ubunit rRNA trees, this tree shows that slime molds diverged after the plant lineage. The slower rate of evolution of actin genes of slime molds relative to those of plants, fungi, and animals species might be responsible for this incongruent branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Google Scholar 

  • Bhattacharya D, Stickel SK, Sogin ML (1991) Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). J Mol Evol 33:525–536

    Google Scholar 

  • Bhattacharya D, Helmchen T, Bibeau C, Melkonian M (1995) Comparisons of nuclear encoded small-subunit ribosomal RNAs reveals the evolutionary position of the Glaucocystophyta. Mol Biol Evol 12:415–420

    Google Scholar 

  • Bhattacharya D, Ehlting J (1995) Actin coding regions: gene family evolution and use as a phylogenetic marker. Arch Protistenkd 145:155–164

    Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    Google Scholar 

  • Bruns TD, Vilgalys R, Barns SM, Gonzales D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1:231–241

    Google Scholar 

  • Cavaler-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    CAS  PubMed  Google Scholar 

  • Chan L, Zuker M, Jacobson AB (1991) A computer method for finding common base paired helices in aligned sequences: application to the analysis of random sequences. Nucleic Acids Res 19:353–358

    Google Scholar 

  • Cole RA, Slade MB, Williams KL (1995) Dictyostelium discoideum mitochondrial DNA encodes a NADH:ubiquinone oxidoreductase subunit which is nuclear encoded in other eukaryotes. J Mol Evol 40:616–621

    Google Scholar 

  • Doolittle RF (1992) Reconstructing history with amino acid sequences. Protein Sci 1:191–200

    Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    CAS  PubMed  Google Scholar 

  • Flaherty KM, McKay DB, Kabsch W, Holmes KC (1991) Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci USA 88:5041–5045

    Google Scholar 

  • Förster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82:306–312

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827

    Google Scholar 

  • Hamelin M, Adam L, Lemieux G, Pallotta D (1988) Expression of the three unlinked isocoding actin genes of Physarum polycephalum. DNA 7:317–328

    Google Scholar 

  • Hasegawa M, Hashimoto T (1993) Ribosomal RNA trees misleading? Nature 361:23

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early branchings in the evolution of eukaryotes: ancient divergence of entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36:380–388

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Okamodo K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol Biol Evol 11:65–71

    Google Scholar 

  • Hendricks L, De Baere R, Van de Peer Y, Neffs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basiodiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 32:167–177

    Google Scholar 

  • Huynen MA, Konings DMA, Hogeweg P (1992) Equal G and C content in histone genes indicate selection pressures on mRNA secondary structure. J Mol Evol 34:280–291

    Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86:7706–7710

    Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1990) Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol 183:281–306

    Google Scholar 

  • Kabnick KS, Peattie DA (1991) Giardia: a missing link between prokaryotes and eukaryotes. Am Sci 79:34–43

    Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    Google Scholar 

  • Le Blancq SM (1994) Chromosome rearrangements in Giardia lamblia. Parasitology Today 10:177–179.

    Google Scholar 

  • Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96

    Google Scholar 

  • Loomis WE, Smith DW (1990) Molecular phylogeny of Dictyostelium discoideum by protein sequence comparison. Proc Natl Acad Sci USA 78:9093–9097

    Google Scholar 

  • Martin W, Somerville CC, Loiseaux-de Goër S (1992) Molecular phylogenies of plastid origins and algal evolution. J Mol Evol 35:385–404

    Google Scholar 

  • Nikoh N, Hayase N, Iwabe N, Kuma K-i, Miyata T (1994) Phylogenetic relationship of the kingdoms animalia, plantae, and fungi inferred from 23 different protein species. Mol Biol Evol 11:762–768

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    Google Scholar 

  • Schlegel M (1994) Molecular phylogeny of eukaryotes. Trends Ecol Evol 9:330–335

    Google Scholar 

  • Sheterline P, Sparrow JC (1994) Actin. Protein Profile 1:1–121

    Google Scholar 

  • Sidow A, Wilson AC (1990) Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J Mol Evol 31:51–68

    Google Scholar 

  • Sogin ML (1989) Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29:487–499

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    CAS  PubMed  Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463

    Google Scholar 

  • Sogin ML, Hinkle G, Leipe DD (1993) Universal tree of life. Nature 362:795

    Google Scholar 

  • Taylor JW, Bowman BH, Berbee ML, White TJ (1993) Fungal model organisms: phylogenetics of Saccharomyces, Aspergillus, and Neurospora. Syst Biol 42:440–457

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Article  CAS  PubMed  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoa: an evolutionary link with fungi. Science0 260:340–342

    Google Scholar 

  • Winker S, Overbeek R, Woese CR, Olsen GL Pfluger N (1990) Structure detection through automated covariance search. Comput Appl Biosci 6:365–371

    Google Scholar 

  • Woese CR, Gutell RR, Gupta R, Noller HF (1983) Detailed analysis of the higher order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    Google Scholar 

  • Wolters J (1991) The troublesome parasites—molecular and morphological evidence that Apicomplexa belong to the dinoflagellatecilliate clade. Biosystems 25:75–83

    Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    CAS  PubMed  Google Scholar 

  • Zuker M (1994) Prediction of RNA secondary structure by energy minimization. Methods Mol Biol 25:267–294

    Google Scholar 

  • Zuker M, Jaeger JA, Turner DH (1991) A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19:2707–2714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. Drouin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drouin, G., de Sá, M. & Zuker, M. The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol 41, 841–849 (1995). https://doi.org/10.1007/BF00173163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173163

Key words

Navigation