Skip to main content
Log in

Molecular phylogeny of the homoptera: a paraphyletic taxon

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Homoptera and Heteroptera comprise a large insect assemblage, the Hemiptera. Many of the plant sap-sucking Homoptera possess unusual and complex life histories and depend on maternally inherited, intracellular bacteria to supplement their nutritionally deficient diets. Presumably in connection with their diet and lifestyles, the morphology of many Homoptera has become greatly reduced, leading to major controversies regarding the phylogenetic affiliations of homopteran superfamilies. The most fundamental question concerns whether the Homoptera as a whole are monophyletic. Recent studies based on morphology have argued that the Homoptera Sternorrhyncha (Aphidoidea, Coccoidea, Psylloidea, Aleyrodoidea) is a sister group to a group comprising the Homoptera Auchenorrhyncha (Fulgoroidea, Cicadoidea, Cercopoidea, Cicadelloidea) and the Heteroptera, making the Homoptera paraphyletic. We sequenced the 5′ 580-680 base pairs of small-subunit (18S) ribosomal DNA from a selection of Homoptera, Hemiptera, and their putative outgroups, the Thysanoptera and Psocoptera, to apply molecular characters to the problem of Homoptera phylogeny. Parsimony, distance, maximum-likelihood, and bootstrap methods were used to construct trees from sequence data and assess support for the topologies produced. Molecular data corroborate current views of relationships within the Sternorrhyncha and Auchenorrhyncha based on morphology and strongly support the hypothesis of homopteran paraphyly as stated above. In addition, it was found that Homoptera Sternorrhyncha have extra, GC-rich sequence concentrated in a variable region of the 18S rDNA, which indicates that some unique evolutionary processes are occurring in this lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie JW (1989) A randomization test for phylogenetic information in systematic data. Syst Zool 38:239–252

    Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. J Wiley and Sons, New York

    Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York, pp 297–332

    Google Scholar 

  • Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Google Scholar 

  • Carmean D, Kimsey LS, Berbee ML (1992) 18S rDNA sequences and the holometabolous insects. Mol Phyl Evol 1:270–278

    Google Scholar 

  • Carpenter FM (1992) Treatise on invertebrate paleontology. Vol 3, Superclass Hexapoda. The Geological Society of America, Boulder, CO, and the University of Kansas, Lawrence, KA

    Google Scholar 

  • Carver M, Gross GF, Woodward TE (1991) Hemiptera (bugs, leafhoppers, cicadas, aphids, scale insects etc.). In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, Vol I, 2nd ed. Melbourne University Press, Carlton, p 429

    Google Scholar 

  • Cobben RH (1978) Evolutionary trends in Heteroptera. II. Mouthpartstructures and feeding strategies. Mededelingen Landbouwhogeschool, Wageningen, The Netherlands

    Google Scholar 

  • Evans JW (1946) A natural classification of leaf-hoppers (Jassoidea, Homoptera). Pt 1. External morphology and systematic position. Trans R Entomol Soc Lond 96:47–60

    Google Scholar 

  • Evans JW (1963) The phylogeny of the Homoptera. Annu Rev Entomol 8:77–94

    Google Scholar 

  • Faith DP, Cranston PS (1991) Could a cladogram this short have arisen by chance alone?: on permutation tests for cladistic structure. Cladistics 7:1–28

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package). Version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Gawel NJ, Bartlett AC (1993) Characterization of differences between whiteflies using RAPD-PCR. Insect Mol Biol 2:33–38

    Google Scholar 

  • Genetics Computer Group (1991) Program manual for the GCG package, version 7, April 1991. Madison, WI

  • Goodchild AJP (1966) Evolution of the alimentary canal in the Hemiptera. Biol Rev 41:97–140

    Google Scholar 

  • Hamilton KGA (1981) Morphology and evolution of the rhynchotan head (Insecta: Hemiptera, Homoptera). Can Entomol 113:953–974

    Google Scholar 

  • Hendriks L, Van Broeckhoven C, Vandenberghe A, Van de Peer Y, De Wachter R (1988) Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma califomica and evolutionary relationships among eukaryotic phyla. Eur J Biochem 177:15–20

    Google Scholar 

  • Hennig W (1981) Insect phylogeny. J Wiley and Sons, New York

    Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Google Scholar 

  • Hodkinson ID (1974) The biology of the Psylloidea (Homoptera)—a review. Bull Entomol Res 64:325–339

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Kramer S (1950) The morphology and phylogeny of auchenorhynchous Homoptera (Insecta). III Biol Monog 20:1–11

    Google Scholar 

  • Kristensen NP (1973) The phylogeny of hexapod “orders.” A critical review of recent accounts. Z Zool Syst Evolut-forsch 13:1–44

    Google Scholar 

  • Kristensen NP (1981) Phylogeny of insect orders. Annu Rev Entomol 26:135–157

    Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, Vol I, 2nd ed. Melbourne University Press, Carlton, p 125

    Google Scholar 

  • Kukalová-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, vol 1, 2nd ed. Carlton, Melbourne University Press, p 141

    Google Scholar 

  • Kwon O, Ogino K, Ishikawa H (1991) The longest 188 ribosomal RNA ever known: nucleotide sequence and presumed secondary structure of the 188 rDNA of the pea aphid, Acyrthosiphon pisum. Eur J Biochem 202:827–833

    Google Scholar 

  • Labandiera CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315

    Google Scholar 

  • Lyal CHC (1985) Phylogeny and classification of the Psocodea, with special reference to the lice (Psocodea: Phthiraptera). Syst Entomol 10:145–165

    Google Scholar 

  • MacGavin GC (1993) Bugs of the world. Facts on File, New York

  • Maddison WP, Maddison DR (1992) MacClade. Analysis of phylogeny and character evolution. Version 3. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Miller DR, Kosztarab M (1979) Recent advances in the study of scale insects. Annu Rev Entomol 24:1–27

    Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 37:321–348

    Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell B (1991) Evidence for the establishment of aphideubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    Google Scholar 

  • Nault LR, Rodriguez JG (1985) The leafhoppers and planthoppers. J Wiley and Sons, NY

    Google Scholar 

  • Nei M (1991) Relative efficiencies of different tree-making methods for molecular data. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford, New York, pp 90–128

  • Nelles L, Fang BL, Volckaert G, Vandenberghe A, De Wachter R (1984) Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotec small subunit RNAs. Nucleic Acids Res 12:8749–8768

    Google Scholar 

  • Nur U (1971) Parthenogenesis in coccids (Homoptera). Am Zool 11: 301–308

    Google Scholar 

  • Ossianilsson F (1981) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Pt 2. The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomol Scand 7:223–593

    Google Scholar 

  • Poisson R, Pesson P (1951) Super-ordre des Hémiptéroides (Hemiptera Linné, 1758, Rhynchota Burmeister, 1835). In: Grassé P-P (ed) Traité de Zoologie: Anatomic, Systématique, Biologic. Tome X. Insectes superieurs, et Hémiptéroides. 2 vols. Masson, Paris, pp 1–975,976–1948

    Google Scholar 

  • Ross HH (1955) The evolution of insect orders. Entomol News 66: 197–208

    Google Scholar 

  • Ross HH (1965) A textbook of entomology, 3rd ed. Wiley, New York

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf J, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schlee D (1969) Bau and Funktion des Aedeagus bei Psyllina und deren Bedeutung fur systematische Untersuchungen. Phylogenetische Studien an Hemiptera 111. Entkräftung eines Arguments gegen die Monophylie der Sternorrhyncha. Z Morphol Tiere 64:139–150

    Google Scholar 

  • Scudder GGE (1973) Recent advances in the higher systematics and phylogenetic concepts in entomology. Can Entomol 105:1251–1263

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotec small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387

    Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL

    Google Scholar 

  • Szelegiewicz H (1971) Autapomorphous wing characters in the recent subgroups of Sternorrhyncha (Hemiptera) and their significance in the interpretation of the Paleozoic members of the group. Ann Zool 29:1–67

    Google Scholar 

  • Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Evol Biol 5:366–376

    Google Scholar 

  • Theron JG (1958) Comparative studies on the morphology of male scale insects (Homoptera: Coccoidea). Ann Univ Stellenbosch 34: 1–71

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Article  CAS  PubMed  Google Scholar 

  • Wheeler WC, Schuh RT, Bang R (1993) Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Entomol Scand 24:121–137

    Google Scholar 

  • Wootton RJ (1981) Paleozoic insects. Ann Rev Entomol 26:319–344

    Google Scholar 

  • Wootton RJ, Betts CR (1986) Homology and function in the wings of Heteroptera. Syst Entomol 11:389–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: C.D. von Dohlen

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Dohlen, C.D., Moran, N.A. Molecular phylogeny of the homoptera: a paraphyletic taxon. J Mol Evol 41, 211–223 (1995). https://doi.org/10.1007/BF00170675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170675

Key words

Navigation