Skip to main content
Log in

High-level secretion of hirudin by Hansenula polymorpha —authentic processing of three different preprohirudins

  • Biotechnology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A DNA sequence coding for a subtype of the hirudin variant HV1 was expressed in the methylotrophic yeast Hansenula polymorpha from a strongly inducible promoter element derived from a gene of the inducible promoter element derived from a gene of the methanol metabolism pathway. For secretion, the coding sequence was fused to the KEX2 recognition site of three different prepro segments engineered from the MFα1 gene of Saccharomyces cerevisiae, the gluco-amylase (GAM1) gene of Schwanniomyces occidentalis and the gene for a crustacean hyperglycemic hormone from the shore crab Carcinus maenas. In all three cases, correct processing of the precursor molecule and efficient secretion of the mature protein were observed. In fermentations on a 10-1 scale of a transformant strain harbouring a MFα1/hirudin-gene fusion yields in the range of grams per litre could be obtained. The majority of the secreted product was identified as the full-length 65-amino-acid hirudin. Only small amounts of a truncated 63-amino- acid product, frequently observed in S. cerevisiae-based expression systems, could be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achstetter T, Wolf, DH (1985) Hormone processing and membrane bound proteases in yeast. EMBO J 4:173–177

    Google Scholar 

  • Achstetter T, Ngyen-Juilleret M, Findeli A, Merkamm M, Lemoine Y (1992) A new signal peptide useful for secretion of heterologous proteins from yeast and its applications for synthesis of hirudin. Gene 110:25–31

    Google Scholar 

  • Bagdy D, Barabas E, Graf L (1973) Large scale preparation of hirudin. Thromb Res 2:229–238

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1521

    CAS  PubMed  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JA, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Google Scholar 

  • Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) α-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81: 4612–4616

    Google Scholar 

  • Dodt J, Müller HP, Seemüller U, Chang JY (1984) The complete amino acid sequence of hirudin, a thrombin specific inhibitor. FEBS Lett 165:180–184

    Google Scholar 

  • Dohmen RJ, Strasser AWM, Dahlems U, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121

    Google Scholar 

  • Dohmen RJ, Strasser AWM, Höhner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Google Scholar 

  • Garnier J, Osguthospe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120

    Google Scholar 

  • Gellissen G (1994) Heterologous gene expression in C1 compound-utilizing yeasts. In: Murooka Y, Imanaka T (eds) Recombinant microbes for industrial and agricultural applications, Dekker, New York, pp 787–796

    Google Scholar 

  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Strasser AWM (1991) Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295

    Google Scholar 

  • Gellissen G, Weydemann U, Strasser AWM, Piontek M, Janowicz ZA, Hollenberg CP (1992a) Progress in developing methylotrophic yeasts as expression systems. Trends Biotechnol 10:413–417

    Article  CAS  PubMed  Google Scholar 

  • Gellissen G, Janowicz ZA, Weydemann U, Melber K, Strasser AWM, Hollenberg CP (1992b) High-level expression of foreign genes in Hansenula polymorpha. Biotechnol Adv 10:179–189

    Google Scholar 

  • Gellissen G, Melber K, Janowicz ZA, Dahlems U, Weydemann U, Piontek M, Strasser AWM, Hollenberg CP (1992c) Heterologous protein production in yeasts. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 62:79–93

    Google Scholar 

  • Gellissen G, Hollenberg CP, Janowicz ZA (1994) Gene expression in methylotrophic yeasts. In: Smith A (ed) Gene expression in recombinant microorganisms, Dekker, New York, pp 195–239

    Google Scholar 

  • George-Nascimento C, Gyenes A, Halloran SM, Merryweather JP, Steimer KS, Masiarz FR, Randolph A (1988) Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry 27:797–802

    Google Scholar 

  • Griesbach U, Stürzebecher J, Markwardt F (1985) Assay of hirudin in plasma using a chromogenic thrombin substrate. Thromb Res 37:347–350

    Google Scholar 

  • Hadfield C, Raina KK, Shashi-Menon K, Mount RC (1993) The expression and performance of cloned genes in yeasts. Mycol Res 97:897–944

    Google Scholar 

  • Harvey RP, Degryse E, Stefani L, Schamber F, Cazenave JP, Courtney M, Tolstoshev P, Lecocq JP (1986) Cloning and expression of a cDNA coding for the anticoagulant hirudin from the blood-sucking leech, Hirudo medicinalis. Proc Natl Acad Sci USA 83:1084–1088

    Google Scholar 

  • Heijne G von (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    PubMed  Google Scholar 

  • Heim J, Takabayashi K, Meyhack B, Märki W, Pohlig G (1994) C-terminal proteolytic degradation of recombinant desulfatohirudin and its mutants in the yeast Saccharomyces cerevisiae. Eur J Biochem 226:341–353

    Google Scholar 

  • Hinnen A, Buxton F, Chaudhuri B, Heim J, Hottiger T, Meyhack B, Pohlig G (1994) Gene expression in recombinant yeast. In: Smith A (ed) Gene expression in recombinant microorganisms, Dekker, New York, pp 121–193

    Google Scholar 

  • Hoffmann KJ, Schultz LD (1991) Mutations of the alpha galactosidase signal peptide which greatly enhance secretion of the heterologous proteins by yeast. Gene 94:105–111

    Google Scholar 

  • Johnson PH, Sze P, Winant R, Payne PW, Lazar JB (1989) Biochemistry and genetic engineering of hirudin. Semin Thromb Hemost 15:302–315

    Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine endopeptidase required for processing of yeast prepro-α-factor. Cell 37:1075–1083

    Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Ledeboer AM, Edens L, Maat J, Visser C, Bos J, Verrips CT, Janowicz, ZA, Eckart M, Roggenkamp RO, Hollenberg CP (1985) Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res 13:3063–3082

    Google Scholar 

  • Loison G, Findelli A, Bernard S, Nguyen-Juilleret M, Marquet M, Riehl-Bellon N, Carvallo D, Guerra-Santos L, Brown SW, Courtney M, Roitsch C, Lemoine Y (1988) Expression and secretion of biologically active leech hirudin. Biotechnology 6:72–77

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Märki WE, Wallis RB (1990) The anticoagulant and antithrombotic properties of hirudins. Thromb Haemost 64:344–348

    Google Scholar 

  • Märki WE, Grossenbacher H, Grütter MG, Liersch MH, Meyhack B, Heim J. (1991) Recombinant hirudin: Genetic engineering and structure analysis. Semin. Thromb Hemost 17:88–93

    Google Scholar 

  • Markwardt F (1991a) Hirudin and derivatives as anticoagulant agents. Thromb Haemost 66:141–152

    Google Scholar 

  • Markwardt F (1991b) The comeback of hirudin as an antithrombotic agent. Semin Thromb Haemost 17:79–82

    Google Scholar 

  • Needleman SB (ed) (1978) Protein sequence determination Springer, Berlin

    Google Scholar 

  • Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25:205–215

    Google Scholar 

  • Roggenkamp RO, Hansen H, Eckart M, Janowicz ZA, Hollenberg CP (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202:302–308

    Google Scholar 

  • Schekman R (1985) Protein localization and membrane traffic in yeast. Annu Rev Cell Biol 1:115–143

    Google Scholar 

  • Seemüller U, Dodt J, Fink E, Fritz H (1986) Proteinase inhibitors of the leech Hirudo medicinalis (hirudins, bdellins, eglins). In: Barrett AJ, Salvesen G (eds) Proteases. Elsevier, Amsterdam, pp 337–359

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Stevens TH, Rothman JH, Payne GS, Schekman R (1986) Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102:1551–1557

    CAS  PubMed  Google Scholar 

  • Tebbe CC, Vahjen W, Munch JC, Feldmann SD, Ney U, Sahm H, Gellissen G, Amore R, Hollenberg CP (1994a) Verbundprojekt Sicherheitsforschung Gentechnik. Teil 1. Überleben der Untersuchungsstämme und Persistenz ihrer rekombinanten DNA. Bioengineering 6/94:14–21

    Google Scholar 

  • Tebbe CC, Vahjen W, Munch JC, Meier B, Gellissen G, Feldmann SD, Sahm H, Amore R, Hollenberg CP, Blum S, Wackernagel W (1994b) Verbundprojekt Sicherheitsforschung Gentechnik. Teil 2. Mesokosmenuntersuchungen und Einfluß der Habitat-bedingungen auf die Expression, Überdauerung und Übertragung des Aprotinin-Gens. Bioengineering 6/94:22–26

    Google Scholar 

  • Vedvick T, Buckholz RG, Engel M, Urcan M, Kinney J, Provow S, Siegel RS, Thill GP (1991) High level secretion of biologically active aprotinin from the yeast Pichia pastoris. J Ind Microbiol 7:197–202

    Google Scholar 

  • Vlasuk GP, Bencen GH, Scarborough RM, Tsai PK, Whang JL, Maak T, Camargo MJF, Hirsher SW, Abraham JA (1986) Expression and secretion of biologically active human natriuretic peptide in Saccharomyces cerevisiae. J Biol Chem 261: 4789–4796

    Google Scholar 

  • Walsmann P (1991) Isolation and characterization of hirudin from Hirudo medicinalis. Semin Thromb Hemost 17:83–87

    Google Scholar 

  • Waters MG, Evans EA, Blobel G (1988) Prepro α-factor has a cleavable signal sequence. J Biol Chem 263:6209–6214

    Google Scholar 

  • Weidemann W, Gromoll J, Keller R (1989) Cloning and sequence analysis of cDNA for precursor of a crustacean hyperglycemic hormone. FEBS Lett 257:31–34

    Google Scholar 

  • Weydemann U, Keup P, Gellissen G, Janowicz ZA (1995) Ein industrielles Herstellungsverfahren von rekombinantem Hirudin in der methylotrophen Hefe Hansenula polymorpha. Bioscope 3:8–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weydemann, U., Keup, P., Piontek, M. et al. High-level secretion of hirudin by Hansenula polymorpha —authentic processing of three different preprohirudins. Appl Microbiol Biotechnol 44, 377–385 (1995). https://doi.org/10.1007/BF00169932

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169932

Keywords

Navigation