Skip to main content
Log in

Sources of C20-polyunsaturated fatty acids for biotechnological use

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Polyunsaturated fatty acids with 20 carbon atoms exhibit unique physiological activities in the human body, for example lowering of cholesterol and triacylglycerols in plasma, prevention of atherosclerosis and other cardiovascular diseases and reduction of colagen-induced thrombocyte aggregation. Moreover, these fatty acids are of great value in the nutrition of edible marine animals reared in mariculture, and as precursors of eicosanoid hormones. Potential sources of such fatty acids include fungi, mainly lower Phycomycetes, microalgae, viz. dinoflagellates, diatoms and unicellular red algae, marine macroalgae, particularly Phaeophyta and Rhodophyta, and mosses. The biomass may be enriched with C20-polyunsaturated fatty acids by chilling, nitrogen starvation, controlled illumination and incubation with lipophilic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam O (1990) Stoffwechselwirkungen und Nebenwirkungen der η-3-Fettsäuren (DGF-Abstract). Fat Sci Technol 92:423

    Google Scholar 

  • Ahern TJ, Katoh S, Sada E (1983) Arachidonic acid production by the red alga Porphyridium cruentum. Biotechnol Bioeng 25:1057–1070

    Google Scholar 

  • Al-Hasan RH, El-Saadawi WE, Ali AM, Radwan SS (1989) Arachidonic and eicosapentaenoic acids in lipids of Bryum bicolor Dicks. Effects of controlled temperature and illumination. Bryologist 92:178–182

    Google Scholar 

  • Al-Hasan RH, El-Saadawi WE, Ali AM, Radwan SS (1990) Lipids of the gametophyte and saprophyte of Funaria hygrometrica. Comparison with lipids from leaves of vascular plants. Bryologist 93:44–49

    Google Scholar 

  • Al-Hasan RH, Ali MA, Ka'wash HH, Radwan SS (1991a) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp. Potential in mariculture. J Appl Phycol 3:in press

  • Al-Hasan RH, El-Saadawi WE, Hantash FM, Radwan SS (1991b) High contents of homo-α-linolenic acid (20:3 ω3) in ganetophores of 2 mosses. Phytochemistry 30:117–120

    Google Scholar 

  • Al-Hasan RH, Hantash FM, Radwan SS (1991c) Enriching marine macroalgae with eicosatetraenoic (arachidonic) and eicosapentaenoic acids by chilling. Appl Microbiol Biotechnol 35:530–535

    Google Scholar 

  • Al-Hasan RH, Ka'wash HH, Radwan SS (1991d) Enrichment of mosses with lipids and polyunsaturated fatty acids by nitrogen-starvation. Bryologist 94:in press

  • Araki S, Sakurai T, Oohusa T, Kayama M, Sato N (1989) Characterization of sulfoquinovosyldiacylglycerol from marine red algae. Plant Cell Physiol 30:775–781

    Google Scholar 

  • Arao T, Kawaguchi A, Yamada M (1987) Positional distribution of fatty acids in lipids of the marine diatom Phaeodactylum trinornutum. Phytochemistry 26:2573–2576

    Google Scholar 

  • Arao T, Yamada M (1989) Positional distribution of fatty acids in galactolipids of algae. Phytochemistry 28:805–810

    Google Scholar 

  • Attavian BN, Floyd GL, Fairbrothers DE (1977) Fatty acids of filamentous green algae. Biochem Syst Ecol 5:65–69

    Google Scholar 

  • Baus M, Abo-Elnaga N, Elmadfa I (1990) Auswirkungen hoher η-3-Fettsäurezufuhr auf den Tocopherolstatus bei marginaler Proteinversorgung (DGF-Abstract). Fat Sci Technol 92:430–431

    Google Scholar 

  • Beach DH, Harrington GW, L'Gellerman J, Schlenk H, Holz GG Jr. (1974) Biosynthesis of oleic acid and docohexaenoic acid by a heterotrophic marine dinoflagellate Crypthecodinium cohnii. Biochim Biophys Acta 369:16–24

    Google Scholar 

  • Benzing S, Elmadfa I (1990) Wie ändert sich die Struktur der Membranphospholipide der Erythrozyten und Mitochindrien in Abhängigkeit von ω-6/ω-3-Verhältnis der Nahrungslipide (DGF-Abstract). Fat Sci Technol 92:431

    Google Scholar 

  • Bishop DG, Kenrick JR (1986) Fatty acid composition of symbiotic zooxanthellae in relation to their host. Lipids 15:799–804

    Google Scholar 

  • Chu F-LE, Dupuy JL (1980) The fatty acid compositiom of three unicellular algal species used as food sources for larvae of the American oyster (Grassostrea virginica). Lipids 15:356–364

    Google Scholar 

  • Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116

    Google Scholar 

  • Cohen Z, Vonshak A, Boussiba S, Richmond A (1987) The effect of temperature and cell concentration on the fatty acid composition of outdoor cultures of Porphyridium cruentum. In: Stadler T, Karamanos Y, Mollion J, Morvan H, Verdus M-C, Christaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, Essex, UK, pp 421–430

    Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions of fatty acids composition of the red alga Porphyridium cruentum: correlation to growth rate. J Phycol 24:328–332

    Google Scholar 

  • Cojocaru M, Shlosberg M, Dubinsky Z, Finkel A (1988) Gas chromatographic/mass spectrometric analysis of fatty acids found in aquatic algae. Biomed Environ Mass Spectrom 16:477–480

    Google Scholar 

  • Corey EJ, Washburn WN (1974) The role of symbiotic algae of Plexaura homonella in prostaglandin biosynthesis. J Am Chem Soc 96:934–935

    Google Scholar 

  • Cranwell PA, Jaworski GHM, Bickley HM (1990) Hydrocarbons, sterols and fatty acids in six freshwater chlorophytes. Phytochemistry 29:145–151

    Google Scholar 

  • Das UN, Begin ME, Huang YS, Horrobin DF (1987) Polyunsaturated fatty acids angment free radical generation in tumor cells in vitro. Biochem Biophys Res Commun 145:15–24

    Google Scholar 

  • Deby C (1988) Metabolism of polyunsaturated fatty acids, precursors of eicosanoids. In: Curtis-Prior PB (ed) Churchill Livingstone, London, pp 11–36

    Google Scholar 

  • Dikarev VP (1983) Lipid composition of Noctiluca miliaris and problems of its taxonomic position. Sov J Mar Biol 8:242–245

    Google Scholar 

  • Dosanjhi BS, Higgs DA, Plotnikoff MD, Markert JR, Buckley JT (1988) Preliminary evaluation of Canola oil, pork lard and marine lipids singly and in combination as supplemental dietary lipid source for juvenile fall chinook salmon. Aquaculture 68:325–343

    Google Scholar 

  • Dyerberg J (1986) Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr Rev 44:125–134

    Google Scholar 

  • Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Evaluation of phycoplankton as diets for juvenile Ostrea edulis L. J Exp Mar Biol Ecol 96:1–13

    Google Scholar 

  • Fouche CE Jr., Coniglio JG (1977) Biosynthesis of docosa-4,7,10,13,16-pentaenoic acid in Euglena gracilis. Comp Biochem Physiol Ser B 57:261–263

    Google Scholar 

  • Fox NC, Coniglio JG, Wolf FT (1983) Lipid composition and metabolism in oospores and oospheres of Achlya americana. Exp Mycol 7:216–226

    Google Scholar 

  • Gellerman JL, Anderson WH, Schenk H (1972) Highly unsaturated lipids of Mnium, Polytrichum, Marchantia and Matteuccia. Bryologist 75:550–557

    Google Scholar 

  • Gregson RP, Marwood JF, Quinn RJ (1979) The occurrence of prostaglandins PGF2 and PGF2alpha in a plant — the red alga Gracilaria lichenoides. Tetrahedron Lett 46:4505–4506

    Google Scholar 

  • Grimsley NH, Grimsley JM, Hartmann E (1981) Fatty acid composition of mutants of the moss Physcomitrella patens. Phytochemistry 20:1519–1524

    Google Scholar 

  • Hansson L, Dóstálek M (1988) Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl Microbiol Biotechnol 28:240–246

    Google Scholar 

  • Hansson L, Dóstálek M, Sörenby B (1989) Production of γ-linolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture. Appl Microbiol Biotechnol 31:223–227

    Google Scholar 

  • Harvey HR, Bradshaw SA, O'Hara SCM, Corner EDS (1988) Lipid composition of the marine dinoflagellate Scrippsiella trochoidea. Phytochemistry 27:1723–1729

    Google Scholar 

  • Haskins DH, Tulloch AP, Micetich RG (1963) Sterols and the stimulation of reproduction of Pythium. Can J Microbiol 10:187–195

    Google Scholar 

  • Hayashi K, Kida S, Kato K, Yamada M (1974) Component fatty acids of acetone-soluble lipids of 17 species of marine benthic algae. Bull Jpn Soc Fish 40:609–617

    Google Scholar 

  • Hemerick G (1973) Mass culture. In: Stein JR (ed) Phycological methods. Cambridge University Press, Cambridge, pp 255–266

    Google Scholar 

  • Henderson RT, Sargent JR (1989) Lipid composition and biosynthesis in aging cultures of the marine cryptomonad, Chroomonas salina. Phytpchemistry 28:1355–1361

    Google Scholar 

  • Henderson RT, Leftley JW, Sargent JR (1988) Lipid composition and biosynthesis in the marine dinoflagellate Crythecodinium cohnii. Phytochemistry 27:1679–1683

    Google Scholar 

  • Horrobin DF, Hung YS (1987) The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease. J Cardiol 17:173–180

    Google Scholar 

  • Horton EW (1972) Prostaglandins. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hsu CFJ, Jlu J, Mizuba S (1977) Microbiol β-oxidation of prostaglandins. Dev Ind Microbiol 18:487–497

    Google Scholar 

  • Iizuka H, Ohtomo T, Yoshida K (1979) Production of arachidonic acid by hydrocarbon-utilizing strain of Penicillium cyaneum. Eur J Appl Microbiol Biotechnol 7:173–180

    Google Scholar 

  • Johns RB, Nichols PD, Perry GT (1979) Fatty acid composition of ten marine algae from Australian waters. Phytochemistry 18:799–802

    Google Scholar 

  • Jones GT, Nichols PD, Johns RB (1983) The lipid composition of Thoracosphaera heimii: evidende for inclusion in the Dinophyceae. J Phycol 19:416–420

    Google Scholar 

  • Joseph JD (1975) Identification of 3,6,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids 10:395–403

    Google Scholar 

  • Karunen P (1978) Studies on moss spores. VII. Fatty acid composition of mono-diglycosyl diglyceride fractions of germinating Polytrichum commune spores. Bryologist 81:100–106

    Google Scholar 

  • Kates M, Volcani BE (1966) Lipod components of diatoms. Biochim Biophys Acta 116:264–271

    Google Scholar 

  • Kennedey RS, Finnerty WR (1975) Microbial assimilation of hydrocarbons. II. Intracytoplasmic membrane induction in Acinetobacter sp. Arch Microbiol 10:85–90

    Google Scholar 

  • Klenk E, Knipprath W, Eberhagen D, Koof HD (1963) Über die ungesättigten Fettsäuren der Fettstoffe von Süsswasser- und Meeresalgen. Z Phys Chem 334:44

    Google Scholar 

  • Koskimies-Soininen K, Simola LK (1980) The fatty acid composition of some Sphagnum spp. Can J Bot 58:259–263

    Google Scholar 

  • Langdon CJ, Waldock MJ (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostea gigas Spat. J Mar Biol Ass UK 61:431–448

    Google Scholar 

  • Lee Y-K, Tan H-M, Low C-S (1989) Effect of salinity on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J Appl Phycol 1:19–23

    Google Scholar 

  • Litchfield JH (1989) Single-cell proteins. In: Marx JL (ed) A revolution in biotechnology. Cambridge University Press, Cambridge, pp 71–81

    Google Scholar 

  • Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 699–806

    Google Scholar 

  • Losert W (1975) Prostaglandine: biologische Bedeutung. Umsch Wiss Tech 75:197–202

    Google Scholar 

  • Ludvik J, Munk V, Dóstálek M (1968) Ultrastructural changes in the yeast Candida lipolytica caused by penetration of hydrocarbons into the cell. Experimentia 24:1066–1068

    Google Scholar 

  • Manocha MS, Campbell CD (1978) The effect of growth temperature on the fatty acid composition of Thamnidium elegans Link. Can J Microbiol 24:670–674

    Google Scholar 

  • Marx JL (1982) The leukotrienes in allergy and inflammation. Science 215:1380–1383

    Google Scholar 

  • Mayzand P, Eaton CA, Ackman RG (1976) The occurrence and distribution of octadecapentaenoic acid in a natural plankton population. Lipids 11:858–862

    Google Scholar 

  • Metzner C, Lüder W, Machholz R, Jung K, Bleyl D (1990) Einfluss von ω-3-Fettsäuren auf den Leberstoffwechsel bei Herz-Kreislauf-Patienten (DGF-Abstract). Fat Sci Technol 92:431

    Google Scholar 

  • Mumma RO, Bruszewski TE (1973) Fungi pathogenic to insects: III. Neutral and polar lipids of Entomophthora coronata. Lipids 8:745–752

    Google Scholar 

  • Murakami M, Makabe K, Yamaguchi K, Konosu S (1989) Cytotoxic polyunsaturated fatty acid from Pediastrum. Phytochemistry 28:625–626

    Google Scholar 

  • Nichols BW, Appleby RS (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Google Scholar 

  • Nyberg H, Koskamies-Soininen K (1984) The phospholipid fatty acids of Porphyridium purpureum cultured in the presence of Triton X-100 and sodium desoxycholate. Phytochemistry 23:2489–2495

    Google Scholar 

  • Opute FI (1974) Lipid and fatty acid composition of diatoms. J Exp Bot 25:823–835

    Google Scholar 

  • Orcutt DM, Patterson GW (1975) Sterol, fatty acid, and elemental composition of diatoms grown in chemically defined media. Comp Biochem Physiol 50 B:579–583

    Google Scholar 

  • Pace-Asciak C, Wolfe LS (1971) A novel prostaglandin derivative formed from arachidonic acid by rat stomach homogenetes. Biochemistry 10:2657–2664

    Google Scholar 

  • Pettitt TR, Jones AL, Harwood JL (1989a) Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:399–405

    Google Scholar 

  • Pettitt TR, Jones AL, Harwood JL (1989b) Lipid metabolism in the red algae, Chondrus crispus and Polysiphonia lanosa as modified by temperature. Phytochemistry 28:2053–2058

    Google Scholar 

  • Radwan SS, Soliman AH (1988) Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. J Gen Microbiol 134:387–393

    Google Scholar 

  • Radwan SS, Shaaban AS, Gebreel HM (1988) Arachidonic acid in the lipids of marine algae maintained under different light colors. Z Naturforsch 43 C:15–18

    Google Scholar 

  • Rezanka T, Vyhnalek O, Podojil M (1988) Separation and identification of lipids and fatty acids of the marine alga Fucus vesiculosus by TLC and GC-MS. Folia Microbiol 33:309–313

    Google Scholar 

  • Safe S (1974) Lipid and alkali extractable fatty acids from Mucor rouxii: effect of thermal changes and age of cells. Lipids 9:952–956

    Google Scholar 

  • Sajbidor J, Cerfik M, Dobronova S (1988) Influence of different carbon sources on growth, lipid content and fatty acid composition of four strains belonging to Mucorales. Biotechnol Lett 10:347–350

    Google Scholar 

  • Schröder E, Rehm H-J (1981) Degradation of long chain n-alkanes by Chlorococcales. Eur J Appl Microbiol Biotechnol 12:36–38

    Google Scholar 

  • Seto A, Wang HL, Hesseltine CW (1984) Culture conditions affect on eicosapentaenoic acid content of Chlorella minutissima. J Am Oil Chem Soc 61:892–894

    Google Scholar 

  • Shaw R (1965) The occurrence of γ-linolenic acid in fungi. Biochim Biophys Acta 98:230–237

    Google Scholar 

  • Shaw R (1966) The polyunsaturated fatty acids of microorganisms. Adv Lipid Res 4:107–174

    Google Scholar 

  • Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H (1988a) Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc 65:1455–1459

    CAS  Google Scholar 

  • Shimizu S, Shinmen Y, Kawashima H, Akimoto K, Yamada H (1988b) Fungal mycelia as novel source of eicosapentaenoic acid. Biochem Biophys Res Commun 150:335–341

    Google Scholar 

  • Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H (1989) Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina at low temperature. Appl Microbiol Biotechnol 32:1–4

    Google Scholar 

  • Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic acid by Mortierella fungi. Selection of a potent producer and optimization of culture conditions or large-scale production. Appl Microbiol Biotechnol 31:11–16

    CAS  Google Scholar 

  • Singer P (1990) Fischreiche Kost und Fischöl-Wirkungen auf ausgewählte Risikofaktoren von Herz-Kreislauf-Krankheiten (DGF-Abstract). Fat Sci Technol 92:430

    Google Scholar 

  • Smith KL, Harwood JL (1984) Lipids and lipid metabolism in the brown alga Fucus serratus. Phytochemistry 23:2469–2473

    Google Scholar 

  • Solberg Y (1983) Lipid constituents of the moss Mniobryum wahlenbergii var. glaciale. Cryptogam Bryol Lichénol 4:129–144

    Google Scholar 

  • Stroh S, Elmadfa I, Schlotzer E, Weidler B (1990) In Vivo and in Vitro Untersuchungen zum Einfluss von ω-3-Polyenfettsäuren auf die Aggregation von Humanthrombozyten (DGF-Abstract). Fat Sci Technol 92:433–434

    Google Scholar 

  • Streyer L (1988) Biochemistry, 3rd edn Freeman, New York, pp 991–992

    Google Scholar 

  • Su H-M, Lei C-H, Liao I-C (1988) The effect of environmental factors on the fatty acid composition of Skeletonema costatum, Chaetocaros gracilis and Tetraselmis chuii. J Fish Soc Taiwan 15:21–34

    Google Scholar 

  • Sugano M, Ishida T, Yoshida K, Tanaka K, Miwa M, Arima M, Morita A (1986) Effects of mold oil containing γ-linolenic acid on the blood cholesterol and eicosanoid levels of rats. Agric Biol Chem 50:2483–2491

    Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level of the eustigmatophyte Nannochloropsis sp.. J Phycol 25:686–692

    Google Scholar 

  • Suzuki O, Yokochi T (1984) A method for the preparation of a fungal body and a lipid rich in gamma-linolenic acid therefrom. European patent application no. 0155420

  • Thomas RJ (1975) Lipid composition of maturing and elongate liverwort sporophyte. Phytochemistry 14:623–626

    Google Scholar 

  • Tornabene TG, Kates M, Volcani BE (1974) Sterols, aliphatic hydrocarbons and fatty acids of a nonphotosynthetic diatom, Nitzschia alba. Lipids 9:279–284

    Google Scholar 

  • Totani N, Oba K (1988) A simple method for production of arachidonic acid by Mortierella alpina. Appl Microbiol Biotechnol 28:135–137

    Google Scholar 

  • Totani N, Watanabe A, Oba K (1987) An improved method for arachidonic acid production by Mortierella alpina. J Jpn Oil Chem Soc 36:328–331

    Google Scholar 

  • Vachon V, McGarrity JT, Breuil C, Armstrong JB, Kushner DJ (1982) Cellular and extracellular lipids of Acinetobacter levoffi during growth of hexadecane. Can J Microbiol 28:660–666

    Google Scholar 

  • Volkman JK, Eglinton G, Corner FDS (1980) Sterols and fatty acids of the marine diatom Biddulphia sinensis. Phytochemistry 19:1809–1813

    Google Scholar 

  • Watnabane T, Oowa F, Kitajima C, Fujita S (1980) Relationship between dietary value of brine shrimp Artemia salina and their content of ω-3 highly unsaturated fatty acids.Bull Jpn Soc Sci Fish 46:35–41

    Google Scholar 

  • Weeks G (1976) The manipulation of the fatty acid composition of Dictyostelium discoideum and its effect on cell differentiation. Biochim Biophys Acta 450:21–32

    Google Scholar 

  • Weete JD, Fuller MS, Huang MQ, Gandhi S (1989) Fatty acids and sterols of selected Hyphochytriomycetes and Chytridiomycetes. Exp Mycol 13:183–195

    Google Scholar 

  • Wood BJB (1974) Fatty acids and saponifiable lipids. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwells, London, pp 236–265

    Google Scholar 

  • Wood BJB (1988) Lipids of algae and protozoa. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 807–867

    Google Scholar 

  • Yamada H, Shimizu S, Shinmen Y (1987) Production of arachidonic acid by Mortierella elongata 1S-5. Agric Biol Chem 51:785–790

    CAS  Google Scholar 

  • Yamamoto Y, Watanabe A (1974) Fatty acid composition of lichens and their phyco- and mycobionts. J Gen Appl Microbiol 20:83–86

    Google Scholar 

  • Zeleneva RN, Maksimova RA, Silayer AB (1979) Lipids from the fungus Trichothecium roseum LK ex fr. Prikl Biokhim Mikrobiol 15:389–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: S. S. Radwan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radwan, S.S. Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl Microbiol Biotechnol 35, 421–430 (1991). https://doi.org/10.1007/BF00169743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169743

Keywords

Navigation