Skip to main content
Log in

Anti-phase solutions in relaxation oscillators coupled through excitatory interactions

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Relaxation oscillators interacting via models of excitatory chemical synapses with sharp thresholds can have stable anti-phase as well as in-phase solutions. The mechanism for anti-phase demonstrated in this paper relies on the fact that, in a large class of neural models, excitatory input slows down the receiving oscillator over a portion of its trajectory. We analyze the effect of this “virtual delay” in an abstract model, and then show that the hypotheses of that model hold for widely used descriptions of bursting neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bélair, J., Holmes, P.: On linearly coupled relaxation oscillations. Quart. Appl. Math. 42, 193–219 (1984)

    Google Scholar 

  2. Bonet, C.: Singular perturbation of relaxed periodic orbits. J. Diff. Eq. 66, 301–339 (1987)

    Google Scholar 

  3. Cronin, J.: Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge: Cambridge University Press 1987

    Google Scholar 

  4. Ellias, S. A., Grossberg, S.: Pattern formation, contrast control, and oscillations in the short-term memory of shunting on-center, off-surround networks. Biol. Cybern. 20, 69–98 (1975)

    Google Scholar 

  5. Ermentrout, G. B.: n:m phase-locking of weakly coupled oscillators. J. Math. Biol. 12, 327–342 (1981)

    Google Scholar 

  6. Ermentrout, G. B., Kopell, N.: Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50, 125–146 (1990)

    Google Scholar 

  7. Grasman, J.: Asymptotic Methods for Relaxation Oscillators and Applications. New York: Springer-Verlag 1987

    Google Scholar 

  8. Grossberg, S.: Some physiological and biochemical consequences of psychological postulates. Proc. Natl. Acad. Sci. (USA) 60, 758–765 (1968)

    Google Scholar 

  9. Grossberg, S.: Contour enhancement, short-term memory, and constancies in reverberating neural networks. SIAM 52, 217–257 (1973)

    Google Scholar 

  10. Hansel, D., Mato, G., Meunier, C.: Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys. Lett. 23, 367–372 (1993)

    Google Scholar 

  11. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544 (1952)

    Google Scholar 

  12. Hoppensteadt, F. C.: An Introduction to the Mathematics of Neurons. Cambridge: Cambridge University Press 1986

    Google Scholar 

  13. Hoppensteadt, F. C., Keener, J. P.: Phase locking of biological clocks. J. Math. Biol. 15, 339–349 (1982)

    Google Scholar 

  14. Jansen, M. J. W.: Synchronization of weakly coupled relaxation oscillators. Math. Centre, Amsterdam, Report TW 180 (1978)

  15. Kopell, N., Somers, D.: Waves and synchrony in arrays of oscillators of relaxation and non-relaxation type (in preparation)

  16. Krinskii, V. I., Pertsov, A. M., Reshetilov, A. N.: Investigation of one mechanism of origin of the ectopic focus of excitation in modified Hodgkin-Huxley equations. Biofizika 2, 271–277 (1972)

    Google Scholar 

  17. Mishchenko, E. F., Rozov, N. Kh.: Differential equations with Small Parameters and Relaxation Oscillations. New York: Plenum Press 1980

    Google Scholar 

  18. Mirollo, R. E., Strogatz, S. H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)

    Google Scholar 

  19. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  20. Neu, J.: Coupled chemical oscillators. SIAM J. Appl. Math. 37, 307–315 (1979)

    Google Scholar 

  21. Nordhaus, T.: Echo-cycles in coupled FitzHugh-Nagumo equations. Ph.D. Thesis, University of Utah 1988

  22. Peskin, C. S.: Mathematical Aspects of Heart Physiology. New York: Courant Institute of Mathematical Sciences Publication 1975

  23. Rand, R. H., Holmes, P. J.: Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Nonlinear Mech. 15, 387–399 (1980)

    Google Scholar 

  24. Rinzel, J.: On repetitive activity in nerve. FASEB Proc. 37, 2793–2802 (1978)

    Google Scholar 

  25. Rinzel, J., Ermentrout, G. B.: Analysis of neural excitability and oscillations. In: C. Koch and I. Segev (eds.): Methods in Neuronal Modeling, pp. 135–169. Cambridge, MA: MIT Press 1989

    Google Scholar 

  26. Schöner, G., Kelso, J. A. S.: A synergetic theory of environmentally specified and learned patterns of movement coordination, II. Biol. Cybern. 58, 81–89 (1988)

    Google Scholar 

  27. Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. (USA) 89, 2471–2474 (1992)

    Google Scholar 

  28. Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68, 393–407 (1993)

    Google Scholar 

  29. Sperling, G., Sondhi, M. M.: Model for visual luminance discrimination and flicker detection. J. Optic. Soc. Am. 58, 1133–1145 (1968)

    Google Scholar 

  30. Storti, D. W., Rand, R. H.: Dynamics of two strongly coupled relaxation oscillators. SIAM J. Appl. Math. 46, 56–67 (1986)

    Google Scholar 

  31. Tikhonov, A.: On the dependence of solutions of differential equations on a small parameter. Math. Sbornik 22, 193–204 (1948)

    Google Scholar 

  32. Torre, V.: Synchronization on nonlinear biochemical oscillators coupled by diffusion. Biol. Cybern. 17, 137–144 (1975)

    Google Scholar 

  33. Wang, X.-J., Rinzel, J.: Alternating and synchronous rhythms in reciprocally inhibitory models neurons. Neur. Comp. 4, 84–97 (1992)

    Google Scholar 

  34. Wilson, H. R., Cowan, J. D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF (DMS-8901913), NIMH-47150

Supported in part by NASA (NGT-50497) and the McDonnell-Pew Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopell, N., Somers, D. Anti-phase solutions in relaxation oscillators coupled through excitatory interactions. J. Math. Biol. 33, 261–280 (1995). https://doi.org/10.1007/BF00169564

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00169564

Key words

Navigation