Skip to main content
Log in

Dynamics of the middle atmosphere

  • Tutorial Lecture
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

It is demonstrated by means of model calculations that while the general configuration of middle atmosphere dynamics (i.e., winter westerlies and summer easterlies) is determined by differential solar heating, the deviations of the zonally-averaged temperature field from radiative equilibrium and the closure of the jet structures with increasing altitude result from the action of zonal mean momentum dissipation processes. The apparent heating and acceleration of the mean zonal state by planetary wave heat and momentum fluxes are examined using an Eulerian framework, and it is demonstrated that these are overestimates of their net effect. It is argued that since decelerations of the mean zonal flow are required in both winter and summer, and planetary waves are known to be very weak in the summer middle atmosphere, gravity waves are probably responsible for most of the middle atmosphere momentum dissipation as a result of their attenuation with height above their wave breaking altitude. Radar observations of middle atmosphere dynamics together with some theoretical work indicates that the effects of breaking gravity waves should be included in the thermodynamic equation as well as the momentum equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G. and McIntyre, M. E.: 1976, J. Atmos. Sci. 33, 2031.

    Google Scholar 

  • Balsley, B. B. and Carter, D. A.: 1982, Geophys. Res. Letters 9, 465.

    Google Scholar 

  • Boyd, J. P.: 1976, J. Atmos. Sci. 33, 2285.

    Google Scholar 

  • Charney, J. G. and Drazin, P. G.: 1961, J. Geophys. Res. 66, 83.

    Google Scholar 

  • Cunnold, D., Alyea, D. F., Phillips, N., and Prinn R.: 1975, J. Atmos. Sci. 32, 170.

    Google Scholar 

  • Edmon, H. J., Jr., Hoskins, B. J. and McIntyre, M. E.: 1980, J. Atmos. Sci. 37, 2600.

    Google Scholar 

  • Eliassen, A. and Palm, E.: 1961, Geofys. Publ. 22, No. 3, 1.

    Google Scholar 

  • Gage, K. S. and Balsley, B. B.: 1978, Bull. Am. Meteorol. Soc. 59, 1074.

    Google Scholar 

  • Groves, G. V.: 1980, Phil. Trans. Roy. Soc. London A296, 19.

    Google Scholar 

  • Hodges, R. R., Jr.: 1967, J. Geophys. Res. 72, 3455.

    Google Scholar 

  • Hodges, R. R., Jr.: 1969, J. Geophys. Res. 74, 4087.

    Google Scholar 

  • Holton, J. R. and Wehrbein, W. M.: 1980, Pure Appl. Geophys. 118, 284.

    Google Scholar 

  • Leovy, C. B.: 1964, J. Atmos. Sci. 21, 327.

    Google Scholar 

  • Lindzen, R. S.: 1981, J. Geophys. Res. 86, 9707.

    Google Scholar 

  • Miller, K. L., Bowhill, S. A., Gibbs, K. P. and Countryman, I. D.: 1978, Geophys. Res. Letters 5, 939.

    Google Scholar 

  • Murgatroyd, R. J.: 1969, in G. A. Corby (ed.), The Global Circulation of the Atmosphere, Roy. Meteor. Soc., London, p. 159.

    Google Scholar 

  • Nastrom, G. D., Balsley, B. B. and Carter, D. A.: 1982, Geophys. Res. Letters 9, 139.

    Google Scholar 

  • Schoeberl, M. R. and Strobel, D. F.: 1978, J. Atmos. Sci. 35, 577.

    Google Scholar 

  • Strobel, D. F.: 1978, J. Geophys. Res. 83, 6225.

    Google Scholar 

  • Walterscheid, R. L.: 1981, Geophys. Res. Letters 8, 1235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 2 of the Stratospheric General Circulation with Chemistry Project, NASA/GSFC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geller, M.A. Dynamics of the middle atmosphere. Space Sci Rev 34, 359–375 (1983). https://doi.org/10.1007/BF00168828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168828

Keywords

Navigation