Skip to main content
Log in

Fate of 14C-labeled anthracene and hexadecane in compost-manured soil

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Experiments were carried out to evaluate the impact of the addition of ripe compost on the degradation of two 14C-labeled hydrocarbon model compounds (anthracene and hexadecane) in soil. The addition of mature compost (20 % dry wt./dry wt.) stimulated significantly the disappearance of the extractable fraction of both compounds. With compost, 23 % of the labeled anthracene was transformed into 14CO2 and 42 % was fixed to the soil matrix irreversibly. In the unsupplemented control reactor more than 88 % of the original anthracene could be recovered by either of two applied organic extraction procedures. The formation of non-extractable bound residues was less significant with [14C] hexadecane since only 21 % of the labeled carbon had become non-extractable after 103 days. The results presented show that compost could stimulate the depletion of hydrocarbons by either mineralization or the formation of unextractable bound residues (humification). The latter process might be a significant route of depletion in soil especially, for those hydrocarbons that are mineralized only slowly. The meaning of this finding for the assessment of soil bioremediation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berghausen M, Goetz D (1993) Change of soil physical values through oil contaminations. In: Arendt F, Annokkee GJ, Bosman R, Brink WJ van den (eds) Contaminated soils '93. Kluwer, Doordrecht, pp 907–910

    Google Scholar 

  • Berry DF, Boyd SA (1985) Decontamination of soil through enhanced formation of bound residues. Environ Sci Technol 19:1132–1133

    Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881

    Google Scholar 

  • Bollag JM, Loll MJ (1983) Incorporation of xenobiotics into soil humus. Experientia 9:1221–1231

    Google Scholar 

  • Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. The science of the total environment 123/124:205–217

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Google Scholar 

  • Calderbank A (1989) The occurrence and significance of bound pesticide residues. Rev Environ Contam Toxicol 108:71–103

    Google Scholar 

  • Cerniglia CE, White GL, Heflich RH (1985) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch Microbiol 143:105–110

    Google Scholar 

  • Dec J, Bollag JM (1988) Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid. Soil Sci Am J 52:1366–1371

    Google Scholar 

  • Eschenbach A, Kästner M, Bierl R, Schaefer G, Mahro B (1994) Evaluation of a new and more effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere 28:683–692

    Google Scholar 

  • Franzius V, Stegmann R, Wolf K (1989) Handbuch der Altlastensanierung; RV Decker's Verlag G. Schenk, Heidelberg

    Google Scholar 

  • Fritsche W Günther T, Hofrichter M, Sack U (1994) Metabolismus von polycyclischen aromatischen Kohlenwasserstoffen durch Pilze verschiedener ökologischer Gruppen. In: Sonder forschungs bereich 193 d. TU Berlin (ed) Schriftenreihe Biologische Abwasserreinigung, TU Berlin, Berlin, vol. 4: pp 167–182

    Google Scholar 

  • Führ F (1987) Non-extractable pesticide residues in soil. In: Greenhalgh R, Poberts TR (eds) Pesticide science and biotechnology. Blackwell, Oxford, pp 381–389

    Google Scholar 

  • Haider KM, Martin JP (1988) Mineralization of 14C-labeled humic acids and of humic-acid bound 14C-xenobiotics by Phanerochaete chrysosporium. Soil Biol Biochem 20:425–429

    Google Scholar 

  • Hassett JJ, Banwart BL (1989) The sorption of nonpolar organics by soils and sediments. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils, SSSA and ASA, Madison, Wis, pp 31–44

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    Google Scholar 

  • Hsu TS, Bartha RJ (1976) Hydrolysable and nonhydrolysable 3,4-dichloroaniline humus complexes and their respective rate of biodegradation. J Agric Food Chem 24:118–122

    Google Scholar 

  • Jandel AS (1991) Ölunfälle schnell beheben. Umwelt 21:358–359

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213

    Google Scholar 

  • Kästner M, Schaefer G, Breuer-Jammali M, Mahro B (1992) Comparison of the microbial degradation potential for PAH in liquid medium, soil and soil compost. In: Kreysa G, Driesel AJ (eds) Dechema Biotechnol Conf 5:1043–1046

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and charaterization of the soil microflora from hydrocarbon-cantaminated soil sites able to mineralize polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 41:267–273

    Google Scholar 

  • Lotter S, Heerenklage J, Stegmann R (1992) Carbon balance and modelling of the oil degradation in soil bioreactors. In: Klein J (ed) Preprints International Symposium: Soil decontamination using biological processes. Dechema, Frankfurt, pp 219–227

    Google Scholar 

  • Lotter S, Brumm A, Bundt J, Heerenklage J, Paschke A, Steinhart H, Stegmann R (1993) Carbon balance of a PAH-contaminated soil during biodegradation as a result of the addition of compost. In: Arendt F, Annokkee GJ, Bosman R, Brink WJ van den (eds) Contaminated soils '93. Kluwer Doordrecht, pp 1235–1245

  • Mahro B, Kästner M (1993) Der mikrobielle Abbau polyzyklischer aromatischer Kohlenwasserstoffe (PAK) in Böden und Sedimentten: Mineralisierung, Metabolitenbildung und Entstehung gebundener Rückstände. Bioengineering 9:50–58

    Google Scholar 

  • Means JC, Wood SG, Hassett JJ, Banwart WL (1980) Sorption of polynuclear hydrocarbons by sediments and soils. Environ Sci Technol 14:1524–1528

    Google Scholar 

  • Michaelsen M, Hulsch R, Höppner T, Berthe-Corti L (1992) Hexadecane mineralization in oxygen-controlled sediment seawater cultivations with autochthonous microorganisms. Appl Environ Microbiol 58:3072–3077

    Google Scholar 

  • Püttmann W (1988) Kriterien zur Beurteilung von Sanierungsverfahren auf mikrobiologischer Basis. In: Rosenkranz D, Einsele G, Harreβ HM (eds) Bodenschutz. Erich Schmidt, Berlin, Lfg V/90: 1–25

    Google Scholar 

  • Richnow HH, Seifert R, Hefter J, Kästner M, Mahro B, Michaelis W (1994) Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Org Geochem 22:671–681

    Google Scholar 

  • Schnöder F, Mittelstaedt W, Führ F (1994) Das Verhalten von Benzo (a) pyren in einer Parabraunerder-Lysimeter-und Laborabbaustudienn. In: TU Berlin (ed) Schriftenreihe Biologische Abwasserreinigung, vol 4. pp 217–230

  • Senesi N (1992) Binding mechanisms of pesticides to soil humic substances. The science of the total environment 123/124:63–76

    Google Scholar 

  • Shannon MJR, Bartha R (1988) Immobilization of leachable toxic soil pollutants by using oxidative enzymes. Appl Environ Microbiol 54:1719–1723

    Google Scholar 

  • Stegmann R, Lotter S, Heerenklage J (1991) Biological treatment of oil-contaminated soils in bioreactors. In: Hinchee RE, Olfenbuttel RF (eds) On site bioreclamation: processes for xeniobiotic and hydrocarbon treatment. Butterworth-Heinemann, Boston, pp 188–208

    Google Scholar 

  • Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW, Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154:260–266

    Google Scholar 

  • Weiβenfels WD, Beyer M, Klein J, Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl Microbiol Biotechnol 34:528–535

    Google Scholar 

  • Weiβenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    Google Scholar 

  • Wislocki PG, Lu AYH (1988) Carcinogenity and mutagenity of proximate and ultimate carcinogens of polycyclic aromatic hydrocarbons. In: Yang SK, Silverman BD (eds) Polycyclic aromatic hydrocarbon carcinogenesis: structure activity relationships, vol 1 CRC, Boca Raton, Fla, pp 1–30

    Google Scholar 

  • Yang SK, Silverman BD (1988) Polycyclic aromatic hydrocarbon carcinogenesis: structure activity relationships. CRC, Boca Raton, Fla, vol. 1 and 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These authors contributed equally to the presented work and should therefore both be considered as first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kästner, M., Lotter, S., Heerenklage, J. et al. Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl Microbiol Biotechnol 43, 1128–1135 (1995). https://doi.org/10.1007/BF00166937

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166937

Keywords

Navigation