Skip to main content
Log in

Introns and higher-order structure in the evolution of serpins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The serpins are a large family of eukaryotic proteins, many but not all of whose members are proteinase inhibitors. Most members of this family show relatively low sequence identity, but crystal structures determined for 6 different serpins are closely similar. The intron positions of 11 serpins, and the intron sizes in 9 of these 11, have been determined. There is considerable diversity in number, position, and size of introns among these serpins, though subsets show clear similarity or identity. Dendrograms derived from comparisons of DNA and amino acid sequences and of intron positions for the 11 serpins differ from each other and from dendrograms previously derived from protein sequences. These dendrograms are difficult to reconcile exclusively with a loss of introns from a large primordial set during the evolution of the serpin family. The tertiary structure of the serpins does support the idea that this protein family arose from an early recombination event which fused the amino and carboxyl domains. The structure of the carboxyl domain also suggests that an insertion subsequent to the fusion event contributed two strands of β-sheet, which complemented three β-sheet strands of the amino domain, to complete β-sheet A, which is the central secondary structure feature of the serpins. Few of the introns lie between regions of secondary or tertiary structure, and it seems more likely that many were acquired subsequent to the early events of serpin evolution and have undergone multiple insertions, deletions, and migrations since, subject to the constraint of the serpin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Api:

α-1-proteinase inhibitor (human)

Aci:

α-1-antichymotrypsin (human)

Agt:

angiotensinogen (rat)

Oah:

ovalbumin (chicken)

Gyh:

gene y (chicken)

At3:

antithrombin 3 (human)

Pi1:

plasminogen activator inhibitor 1—endothelial (human)

Pi2:

plasminogen activator inhibitor 2—placental (human)

Cli:

Cl inhibitor (human)

Apl:

antiplasmin (human)

Bz4:

Z protein (barley).

References

  • Bao J, Sifers RN, Kidd VJ, Ledley FD, Woo SLC (1987) Molecular evolution of serpins: homologous structure of the human α1-antichymotrypsin and α1-antitrypsin genes. Biochemistry 26:7755–7759

    PubMed  Google Scholar 

  • Baumann U, Huber R, Bode W, Grosse D, Lesjak M, Laurell CB (1991) Crystal structure of cleaved human alpha 1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J Mol Biol 218:595–606

    PubMed  Google Scholar 

  • Blake CCF (1978) Do genes-in-pieces imply proteins-in-pieces? Nature 273:267

    Google Scholar 

  • Blake CCF (1985) Exons and the evolution of proteins. Int Rev Cytol 93:149–185

    PubMed  Google Scholar 

  • Braell WA, Lodish HF (1982) Ovalbumin utilizes an NH2-terminal signal sequence. J Biol Chem 257:4578–4582

    PubMed  Google Scholar 

  • Branden CI, Eklund H, Cambillau C, Pryor AJ (1984) Correlation of exons with structural domains in alcohol dehydrogenase. EMBO J 3:1307–1310

    PubMed  Google Scholar 

  • Brandt A, Svendsen I, Hejgaard J (1990) A plant serpin gene. Eur J Biochem 194:499–505

    PubMed  Google Scholar 

  • Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    PubMed  Google Scholar 

  • Carrell RW, Pemberton PA, Boswell DR (1987) The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harbor Symposia on Quantitative Biology 52: 527–535

    PubMed  Google Scholar 

  • Carter PE, Dunbar B, Fothergill JF (1988) Genomic and cDNA cloning of the human Cl inhibitor. Eur J Biochem 173:163–169

    PubMed  Google Scholar 

  • Catterall JF, O'Malley BW, Robertson MA, Staden R, Tanaka Y, Brownlee GG (1978) Nucleotide sequence homology at 12 intron-exon junctions in the chick ovalbumin gene. Nature 257:510–513

    Google Scholar 

  • Craik CS, Buchman SR, Beychok S (1981) O2 binding properties of the product of the central exon of β-globin gene. Nature 291:87–90

    PubMed  Google Scholar 

  • Craik CS, Rutter WJ, Fletterick R (1983) Splice junctions: association with variation in protein structure. Science 220:1125–1129

    PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Eaton WA (1980) The relationship between coding sequences and function in haemoglobin. Nature 284:183–185

    PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (version 3.2) Cladistics 5:164–166

    Google Scholar 

  • Fitch W, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    PubMed  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271:501

    PubMed  Google Scholar 

  • Gō M (1981) Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291:90–92

    PubMed  Google Scholar 

  • Gō M (1983) Modular structural units, exons, and function in chicken lysozyme. Proc Natl Acad Sci USA (1983) 80:1964–1968

    Google Scholar 

  • Heilig R, Muraskowsky R, Kloepfer C, Mandel JL (1982) The ovalbumin gene family: complete sequence and structure of the Y gene. Nucleic Acids Res 10:4363–4382

    PubMed  Google Scholar 

  • Hirosawa S, Nakamura Y, Miura O, Yoshihiko S, Aoki N (1988) Organization of the human α2 plasmin inhibitor gene. Proc Natl Acad Sci 85:6836–6840

    PubMed  Google Scholar 

  • Holland SK, Blake CCF (1987) Proteins, exons and molecular evolution. BioSystems 20:181–206

    PubMed  Google Scholar 

  • Huber R, Carrell RW (1989) Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28:8951–8966

    PubMed  Google Scholar 

  • Inana G, Piatigorsky J, Norman B, Slingsby C, Blundell T (1983) Gene and protein structure of a β-crystallin polypeptide in murine lens: relationship of exons and structural motifs. Nature 302:310–315

    PubMed  Google Scholar 

  • Jensen EO, Paludan K, Hyldig-Nielsen JJ, Jorgensen P, Marcker K (1981) The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291:677–679

    Google Scholar 

  • Jones TA (1978) A graphics model building and refinement system for macro-molecules. J Appl Cryst 11:268–272

    Google Scholar 

  • Jukes TH, Cantor CH (1969) Evolution of protein molecules. In: H.M. Munro (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Jung A, Sippel AE, Grez M, Schutz G (1980) Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci USA 77:5759–5763

    PubMed  Google Scholar 

  • Leicht M, Long GL, Chandra T, Kurachi K, Kidd VJ, Mace Jr. M, Davie EW, Woo SLC (1982) Sequence homology and structural comparison between the chromosomal human α1-antitrypsin and chicken ovalbumin genes. Nature 297:655–659

    PubMed  Google Scholar 

  • Loebermann H, Tokuoka R, Deisenhofer J, Huber R (1984) Human α1 proteinase inhibitor. J Mol Biol 177:531–556

    PubMed  Google Scholar 

  • Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18:545–558

    PubMed  Google Scholar 

  • Loskutoff DJ, Linders M, Keijer J, Veerman H, van Heerikhuizen H, Pannekoek H (1987) Structure of the human plasminogen activator inhibitor 1 gene: non-random distribution of introns. Biochemistry 26:3763–3768

    PubMed  Google Scholar 

  • Marchionni M, Gilbert W (1986) The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46:133–141

    PubMed  Google Scholar 

  • Meek RL, Walsh KA, Palmiter RD (1983) The signal sequence of ovalbumin is located near the NH2 terminus. J Biol Chem 257:12245–12251

    Google Scholar 

  • Michelson AM, Blake CCF, Evans ST, Orkin SH (1984) Structure of the human phosphoglycerate kinase gene and the Intron mediated evolution and dispersal of the nucleotide-binding domain. Proc Natl Acad Sci USA 82:6965–6969

    Google Scholar 

  • Mottonen J, Strand A, Symersky J, Sweet RM, Danley DE, Geoghegan KF, Gerard RD, Goldsmith EJ (1992) Structural basis of latency in plasminogen activator inhibitor-1. Nature 355:270–273

    PubMed  Google Scholar 

  • Palmiter RD, Gagnon J, Walsh KAC (1978) Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. Proc Natl Acad Sci USA 75:94–98

    PubMed  Google Scholar 

  • Pannekoek H, Veerman H, Lambers H, Diergaarde P, Verweij CL, Van Zonneveld AJ, Van Mourik JA (1986) Endothelial plasminogen activator inhibitor (PAI): a new member of the serpin gene family. EMBO J 5:2539–2544

    PubMed  Google Scholar 

  • Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Letters 214:1–7

    PubMed  Google Scholar 

  • Prochownik EV, Bock SC, Orkin SH (1985) Intron structure of the human antithrombin III gene differs from that of other members of the serine protease inhibitor superfamily. J Biol Chem 260:9608–9612

    PubMed  Google Scholar 

  • Rogers JH (1987) How were introns inserted into nuclear genes? Trends Genet 5:458–459

    Google Scholar 

  • Rogers J (1985) Exon shuffling and intron insertion in serine protease genes. Nature 315:458–459

    PubMed  Google Scholar 

  • Sakano H, Rogers JH, Huppi K, Brack C, Traunecker A, Maki R, Wall R, Tonegawa S (1979) Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments. Nature 277:627–633

    PubMed  Google Scholar 

  • Stein JP, Catterall JF, Kristo P, Means AR, O'Malley BW (1980) Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell 21:681–687

    PubMed  Google Scholar 

  • Stein P, Leslie AGW, Finch JT, Tumell WG, McLaughlin PJ, Carrell RW (1990) Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347:99–102

    PubMed  Google Scholar 

  • Strandberg L, Lawrence D, Ny T (1988) The organization of the human-plasminogen-activator-inhibitor-1 gene. Eur J Biochem 176:609–616

    PubMed  Google Scholar 

  • Straus D, Gilbert W (1985) Genetic engineering in the Precambrian: structure of the chicken triose phosphate isomerase gene. Mol Cell Biol 5:3497–3506

    PubMed  Google Scholar 

  • Strehler EE, Mahdavi V, Periasamy M, Nadel-Ginard B (1985) Intron positions are conserved in the 5′ end region of myosin heavy-chain genes. J Biol Chem 260:468–471

    PubMed  Google Scholar 

  • Tanaka T, Ohkubo H, Nakanishi S (1984) Common structural organization of the angiotensinogen and the α-1-antitrypsin genes. J Biol Chem 259:8063–8065

    PubMed  Google Scholar 

  • Traut TW (1988) Do exons code for structural or functional units in proteins? Proc Natl Acad Sci USA 85:2944–2948

    PubMed  Google Scholar 

  • Wozney J, Hanahan D, Tate V, Boedtker H, Doty P (1981) Structure of the pro α2(I) collagen gene. Nature 294: 129–135

    PubMed  Google Scholar 

  • Wright HT, Qian HZ, Huber R (1990) Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. J Mol Biol 213:513–528

    PubMed  Google Scholar 

  • Ye RD, Wun T-C, Sadler JE (1987) cDNA cloning and expression in Escherichia coli of a plasminogen activator inhibitor from human placenta. J Biol Chem 262:3718–3735

    PubMed  Google Scholar 

  • Ye RD, Ahern SM, Le Beau MM, Lebo RV, Sadler JE (1989) Structure of the gene for human plasminogen activator inhibitor-2. J Biol Chem 264:5495–5502

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, H.T. Introns and higher-order structure in the evolution of serpins. J Mol Evol 36, 136–143 (1993). https://doi.org/10.1007/BF00166249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166249

Key words

Navigation