Skip to main content
Log in

Genetic variation of recent Alu insertions in human populations

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The Alu family of intersperesed repeats is comprised of ovr 500,000 members which may be divided into discrete subfamilies based upon mutations held in common between members. Distinct subfamilies of Alu sequences have amplified within the human genome in recent evolutionary history. Several individual Alu family members have amplified so recently in human evolution that they are variable as to presence and absence at specific loci within different human populations. Here, we report on the distribution of six polymorphic Alu insetions in a survey of 563 individuals from 14 human population groups across several continents. Our results indicate that these polymorphic Alu insertions probably have an African origin and that there is a much smaller amount of genetic variation between European populations than that found between other populations groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausabel FM, Brent R, Kingston RE, More DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in Molecular Biology. John Wiley and Sons, New York

    Google Scholar 

  • Bailey AD, Shen C-KJ (1993) Sequential insertion of Alu family repeats into specific genomic sites of higher primates. Proc Nail Acad Sci USA 90:7205–7209

    Google Scholar 

  • Batzer MA, Deininger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9:481–487

    Google Scholar 

  • Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hoppens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798

    Google Scholar 

  • Batzer MA, Gudi VA, Mena JC, Foltz DW, Herrera RJ, Deininger PL (1991) Amplification dynamics of Human-Specific (HS) Alu family members. Nucleic Acids Res 19:3619–3623

    Google Scholar 

  • Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, Deininger PL (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91:12288–12292

    Google Scholar 

  • Batzer MA, Rubin CM, Hellman-Blumberg U, Alegria-Hartman M, Leeflang EP, Stern JD, Bazan HA, Shaikh TH, Deininger PL, Schmid CW (1995) Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 247:418–427

    Google Scholar 

  • Batzer MA, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Boudreau DA, Scheer WD, Herrera RJ, Stoneking M, Deininger PL (1993) Alu repeats as markers for human population genetics. In: Proceedings of the fourth international symposium on human identification. Promega Publishing, Madison, WI, pp 49–57

    Google Scholar 

  • Bowcock AM, Bucci C, Hebert JM, Kidd JR, Kidd KK, Friedlaender IS, Cavalli-Sforza, LL (1987) Study of 47 DNA markers in five populations from four continents. Gene Geography 1:47–64

    Google Scholar 

  • Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza, LL (1991) Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci USA 88:839–843

    Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570

    Google Scholar 

  • Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc Natl Acad Sci USA 85:6002–6006

    Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1993) Demic expansions and human evolution. Science 259:639–646

    Google Scholar 

  • Chakraborty R, Kamboh MI, Nwankwo M, Ferrell RE (1992) Caucasian genes in American blacks: new data. Am J Hum Genet 50: 145–155

    Google Scholar 

  • Deininger PL (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 619–636

    Google Scholar 

  • Deininger PL, Batzer MA (1993) Evolution of Retroposons. Evol Biol 27:157–196

    Google Scholar 

  • Deininger PL, Batzer MA (1995) SINE master genes and population biology. In: Maraia RJ (ed) The impact of short interspersed elements (SINEs) on the host genome. RG Landes, Georgetown, TX, pp 43–60

    Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8:4566–4569

    Google Scholar 

  • Deininger PL, Batzer MA, Hutchison III CA, Edgell MH (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311

    Google Scholar 

  • DiRienzo A, Wilson AC (1991) Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci USA 88: 1597–1601

    Google Scholar 

  • Edwards MC, Gibbs RA (1992) A human dimorphism resulting from loss of an Alu. Genomics 14:590–597

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35:1229–1242

    Google Scholar 

  • Hammer MF (1994) A recent insertion of an Alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol 11:749–761

    Google Scholar 

  • Harpending HC, Ward RH (1982) Chemical systematics and human populations. In: Nitecki M (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, pp 213–256

    Google Scholar 

  • Hutchinson GB, Andrew SE, McDonald H, Goldberg YP, Graham R, Rommens JR, Hayden MR (1993) An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res 21:3379–3383

    Google Scholar 

  • Jurka J (1993) A new subfamily of recently retroposed Alit repeats. Nucleic Acids Res 21:2252

    Google Scholar 

  • Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mal Evol 32:105–121

    Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Google Scholar 

  • Karathanasis SK (1985) Apolipoprotein multigene family: tandem organization of apolipoprotein AI, CIII, and AIV genes. Proc Natl Acad Sci USA 82:6374–6378

    Google Scholar 

  • Kass DH, Batzer MA, Deininger PL (1995) Gene conversion as a secondary mechanism of SINE evolution. Mol Cell Biol 15:19–25

    Google Scholar 

  • Kass DH, Aleman C, Batzer MA, Deininger PL (1994) Identification of a human specific Alu insertion in the Factor XIIIB gene. Genetica 94:1–8

    Google Scholar 

  • Leeflang EP, Liu W-M, Hashimoto C, Choudary PV, Schmid CW (1992) Phylogenetic evidence for multiple Alu source genes. J Mol Evol 35:7–16

    Google Scholar 

  • Leeflang EP, Liu WM, Chesnokov IN, Schmid CW (1993) Phylogenetic isolation of a human Alu founder gene: drift to new subfamily identity. J Mol Evol 37:559–565

    Google Scholar 

  • Matera AG, Hellmann U, Schmid CW (1990a) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432

    Google Scholar 

  • Matera AG, Hellmann U, Hintz MF, Schmid CW (1990b) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 18:6019–6023

    Google Scholar 

  • Merriweather DA, Clark AG, Ballinger SW, Schurr TG, Soodyall H, Jenkins T, Sherry S T, Wallace DW (1991) The structure of human mitochondrial DNA variation. J Mol Evol 33:543–555

    Google Scholar 

  • Monson KL, Moisan JP, Pascal O, McSween M, Aubert D, Giusti A, Budowle B, Lavergne L (in press) Description and analysis of alleles distribution for four VNTR markers in French and French Canadian populations. Hum Hered

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T, Furuyama J, Higashino K (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 88:11315–11319

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Naturalist 106:283–292

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Roychoudhury AK (1993) Evolutionary relationships of human populations on a global scale. Mol Biol Evol 10:927–943

    Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504

    Google Scholar 

  • Perna NT, Batzer MA, Deininger PL, Stoneking M (1992) Alu insertion polymorphism: A new type of marker for human population studies. Hum Biol 64:641–648

    Google Scholar 

  • Piazza A (1993) Who are the Europeans? Science 260:1767–1769

    Google Scholar 

  • Quentin Y (1988) The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202

    Google Scholar 

  • Reynolds JB, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    Google Scholar 

  • Rogers J (1983) Retroposons defined. Nature 301:460

    Google Scholar 

  • Sawada I, Schmid CW (1986) Primate evolution of the α-globin gene cluster and its Alu-like repeats. J Mol Biol 192:693–703

    Google Scholar 

  • Sawada I, Willard C, Shen C-KJ, Chapman B, Wilson AC, Schmid CW (1985) Evolution of Alu family repeats since the divergence of human and chimpanzee. J Mol Evol 22:316–322

    Google Scholar 

  • Schmid CW, Maraia R (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev 2:874–882.

    Google Scholar 

  • Shen M-R, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mot Evol 33:311–320

    Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger PL (1987) Clustering and sub-family relationships of the Alu family in the human genome. Mol Biol Evol 14:19–29

    Google Scholar 

  • Tiret L, Riget B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F (1992) Evidence from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 51:197–205

    Google Scholar 

  • Torroni A, Lott MT, Cabell MF, Chen Y-S, Lavergne L, Wallace DC (1994) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55:760–776

    Google Scholar 

  • Ullu E, Murphy S, Melli M (1982) Human 7S RNA consists of a 140 nucleotide middle repetitive sequence inserted in an Alu sequence. Cell 29:195–202

    Google Scholar 

  • Vidaud D, Vidaud M, Bahnak BR, Siguret V, Sanchez SG, Laurin Y, Meyer D, Goossens M, Lavergne JM (1993) Hemophilia B due to a de novo insertion of a Human-Specific Alu subfamily member within the coding region of the factor IX gene. Fur J Hum Genet 1:30–36

    Google Scholar 

  • Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507

    Google Scholar 

  • Wainscoat JS, Hill AVS, Boyce AL, Flint J, Hernandez M, Thein SL, Old JM, Lynch JR, Falusi AG, Weatherall DJ, Clegg JB (1986) Evolutionary relationships of human populations from an analysis of nuclear DNA polymorphisms. Nature 319:491–493

    Google Scholar 

  • Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866

    Google Scholar 

  • Webb GC, Coggan M, Ichinose A, Board PG (1989) Localization of the coagulation factor XIII B subunit gene (F13B) to chromosome bands 1q31–32.1 and restriction fragment polymorphism at the locus. Hum Genet 81:157–160

    Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    Google Scholar 

  • Yang-Feng TL, Opdenakker G, Volckaert G, Franke U (1986) Human tissue-type plasminogen activator gene located near chromosomal breakpoint in myeloproliferative disorder. Am J Hum Genet 39: 79–87

    Google Scholar 

  • Zietkiewicz E, Richer C, Makalowski W, Jurka J, Labuda D (1994) A young Alu subfamily amplified independently in human and African great apes lineages. Nucleic Acids Res 22:5608–5612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address: Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Medical Center, 1901 Perdido St., New Orleans, LA 70112

Correspondence to: M.A. Batzer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batzer, M.A., Arcot, S.S., Phinney, J.W. et al. Genetic variation of recent Alu insertions in human populations. J Mol Evol 42, 22–29 (1996). https://doi.org/10.1007/BF00163207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163207

Key words

Navigation