Skip to main content
Log in

Population models with environmental stochasticity

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Two discrete population models, one with stochasticity in the carrying capacity and one with stochasticity in the per capita growth rate, are investigated. Conditions under which the corresponding Markov processes are null recurrent and positively recurrent are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brockwell, P. J.: The Extinction Time of A Birth, Death and Catastrophic Process and of A Related Diffusion Model. Adv. Appl. Probab. 17,42–52 (1985)

    Google Scholar 

  2. Capocelli, R. M., Ricciardi, L. M.: A Diffusion Model for Population Growth in Random Environment. Theor. Popul. Biol. 5, 28–41 (1974)

    Google Scholar 

  3. Ellner, S. P.: Asymptotic behaviour of some stochastic difference equation population models. J. Math. Biol. 19, 169–200 (1984)

    Google Scholar 

  4. Ellner, S. P.: Convergence to stationary distributions in two-species stochastic competition models. J. Math. Biol. 27, 451–462 (1989)

    Google Scholar 

  5. Feldman, M., Roughgarden, J.: A Population's Stationary Distribution and Chance of Extinction in a Stochastic Environmental with Remarks on the Theory of Species Packing. Theor. Popul. Biol. 7, 197–207 (1975)

    Google Scholar 

  6. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, second ed. New York: Wiley 1971

    Google Scholar 

  7. Gripenberg, G.: A Stationary Distribution for the Growth of a Population Subject to Random Catastrophes. J. Math. Biol. 17, 371–379 (1983)

    Google Scholar 

  8. Guess, H. A., Gillespie, J. H.: Diffusion Approximation to Linear Stochastic Difference Equations with Stationary Coefficients. J. Appl. Probab. 14, 58–74 (1977)

    Google Scholar 

  9. Hanski, I., Woiwod, I. P.: Mean-related Stochasticity and Population Variability. Oikos 67, 29–39 (1993)

    Google Scholar 

  10. Hanson, F.B., Tuckwell, H. C.: Logistic Growth with Random Density Dependent Disasters. Theor. Popul. Biol. 19, 1–18 (1981)

    Google Scholar 

  11. Jones, D. A.: Nonlinear Autoregressive Processes. Proc. R. Soc. Lond., Ser. A 360, 71–95 (1978)

    Google Scholar 

  12. Keiding, N.: Extinction and exponential growth in random environments. Theor. Popul. Biol. 6, 49–63 (1974)

    Google Scholar 

  13. Kiester, A. R., Barakat, R.: Exact Solutions to Certain Stochastic Differential Equation Models of Population Growth. Theor. Popul. Biol. 6, 1–12 (1974)

    Google Scholar 

  14. Laslett, G. M., Pollard, D. B., Tweedie, R. L.: Techniques for Establishing Ergodic and Recurrence Properties of Continuous-Valued Markov Chains. Nav. Res. Logist. 25, 455–472 (1978)

    Google Scholar 

  15. Levins, R.: The Effect of Random Variation of Different Types on Population Growth. Proc. Natl. Acad. Sci. 62, 1061–1065 (1969)

    Google Scholar 

  16. Lewontin, R. C., Cohen, D.: On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. 62, 1056–1060 (1969)

    Google Scholar 

  17. May, R. M.: Stability and complexity in model ecosystems. Princeton, NJ: Princeton University Press (1973)

    Google Scholar 

  18. May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Google Scholar 

  19. Nummelin, E.: General Irreducible Markov Chains and Nonnegative Operators. Cambridge: Cambridge University Press 1984

    Google Scholar 

  20. Renshaw, E.: Modelling Biological Populations in Space and Time (Camb. Stud. Math. Biol., vol. 11) Cambridge: Cambridge University Press 1991

    Google Scholar 

  21. Rosenblatt, M.: Markov Processes, Structure and Asymptotic Behavior. Berlin Heidelberg New York: Springer 1971

    Google Scholar 

  22. Roughgarden, J.: Population Dynamics in a Stochastic Environment: Spectral Theory for the Linearized N-species Lotka-Volterra Equations. Theor. Popul. Biol. 7, 1–12 (1975)

    Google Scholar 

  23. Roughgarden, J.: A Simple Model for Population Dynamics in Stochastic Environments. Am. Nat. 109, 713–736 (1975)

    Google Scholar 

  24. Smith, R. H., Mead, R.: The dynamics of discrete-time stochastic models of population growth. J. Theor. Biol. 86, 607–627 (1980)

    Google Scholar 

  25. Tjøstheim, D.: Non-linear Time Series and Markov Chains. Adv. Appl. Probab. 22, 587–611 (1990)

    Google Scholar 

  26. Tong, H.: Non-Linear Time Series. A Dynamical System Approach. Oxford: Clarendon Press 1990

    Google Scholar 

  27. Tuckwell, H. C.: A Study of Some Diffusion Models of Population Growth. Theor. Popul. Biol. 5, 1–12 (1974)

    Google Scholar 

  28. Turelli, M.: Random Environments and Stochastic Calculus. Theor. Popul. Biol. 12,140–178 (1977)

    Google Scholar 

  29. Tweedie, R. L.: Sufficient Conditions for Ergodicty and Recurrence of Markov Chains on a General State Space. Stochastic Processes Appl. 3, 385–403 (1975)

    Google Scholar 

  30. Tweedie, R. L.: Criteria for Classifying General Markov Chains. Adv. Appl. Probab. 8, 737–771 (1976)

    Google Scholar 

  31. Tweedie, R. L.: The Existence of Moments for Stationary Markov Chains. J. Appl. Probab. 20, 191–196 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, M., Högnäs, G. & Koski, T. Population models with environmental stochasticity. J. Math. Biol. 32, 93–108 (1994). https://doi.org/10.1007/BF00163026

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163026

Key words

Navigation