Skip to main content
Log in

The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The passive membrane properties of the tangential cells in the fly lobula plate (CH, HS, and VS cells, Fig. 1) were determined by combining compartmental modeling and current injection experiments. As a prerequisite, we built a digital base of the cells by 3D-reconstructing individual tangential cells from cobalt-stained material including both CH cells (VCH and DCH cells), all three HS cells (HSN, HSE, and HSS cells) and most members of the VS cell family (Figs. 2, 3). In a first series of experiments, hyperpolarizing and depolarizing currents were injected to determine steady-state I-V curves (Fig. 4). At potentials more negative than resting, a linear relationship holds, whereas at potentials more positive than resting, an outward rectification is observed. Therefore, in all subsequent experiments, when a sinusoidal current of variable frequency was injected, a negative DC current was superimposed to keep the neurons in a hyperpolarized state. The resulting amplitude and phase spectra revealed an average steady-state input resistance of 4 to 5 MΩ and a cut-off frequency between 40 and 80 Hz (Fig. 5). To determine the passive membrane parameters R m (specific membrane resistance), R i (specific internal resistivity), and C m (specific membrane capacitance), the experiments were repeated in computer simulations on compartmental models of the cells (Fig. 6). Good fits between experimental and simulation data were obtained for the following values: R m = 2.5 kΩcm2, R i = 60 Ωcm, and C m = 1.5 μF/cm2 for CH cells; R m = 2.0 kΩcm2, R i = 40 Ωcm, and C m = 0.9 μF/cm2 for HS cells; R m = 2.0 kΩcm2, R i = 40 Ωcm, and C m = 0.8 μF/cm2 for VS cells. An error analysis of the fitting procedure revealed an area of confidence in the R m -R i plane within which the R m -R i value pairs are still compatible with the experimental data given the statistical fluctuations inherent in the experiments (Figs. 7, 8). We also investigated whether there exist characteristic differences between different members of the same cell class and how much the exact placement of the electrode (within ±100 μm along the axon) influences the result of the simulation (Fig. 9). The membrane parameters were further examined by injection of a hyperpolarizing current pulse (Fig. 10). The resulting compartmental models (Fig. 11) based on the passive membrane parameters determined in this way form the basis of forthcoming studies on dendritic integration and signal propagation in the fly tangential cells (Haag et al., 1997; Haag and Borst, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albowitz B, Kuhnt U (1993) Spread of epileptiform potentials in the neocortical slice: Recordings with voltage-sensitive dyes. Brain Res. 631:329–333.

    Google Scholar 

  • Barrett JN, Crill WE (1974) Specific membrane properties of cat motoneurones. J. Physiol. 239:301–324.

    Google Scholar 

  • Bhalla US, Bilitch DH, Bower JM (1992) Rallpacks: A set of bench-marks for neuronal simulators. Trends Neurosci. 15:453–458.

    Google Scholar 

  • Borst A (1990) How do flies land? From behavior to neuronal circuits. BioScience 40:292–299.

    Google Scholar 

  • Borst A (1991) Fly visual interneurons responsive to image expansion. Zool. Jb. Physiol. 95:305–313.

    Google Scholar 

  • Borst A (1995) Periodic current injection (PCI): A new method to image steady-state membrane potential of single neurons in situ using extracellular voltage-sensitive dyes. Z. Naturforsch. 50c:435–438.

    Google Scholar 

  • Borst A, Bahde S (1988) Visual information processing in the fly's landing system. J. Comp. Physiol. A 163:167–173.

    Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci. 12:297–306.

    Google Scholar 

  • Borst A, Egelhaaf M (1990) Direction selectivity of fly motion-sensitive neurons is computed in a two-stage process. Proc. Natl. Acad. Sci. (USA) 87:9363–9367.

    Google Scholar 

  • Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sci. (USA) 89:4139–4143.

    Google Scholar 

  • Borst A, Egelhaaf M (1994) Dendritic processing of synaptic information by sensory interneurons. Trends Neurosci. 17:257–263.

    Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J. Computat. Neurosci. 2:5–18.

    Google Scholar 

  • Brotz TM, Egelhaaf M, Borst A (1995) A preparation of the blowfly (Calliphora erythrocephala) brain for in vitro electrophysiological and pharmacological studies. J. Neurosci. Meth. 57:37–46.

    Google Scholar 

  • Brown TH, Fricke RA, Perkel DH (1981a) Passive electrical constants in three classes of hippocampal neurons. J. Neurophysiol. 46:812–827.

    Google Scholar 

  • Brown TH, Perkel DH, Norris JC, Peacock JH (1981b) Electronic structure and specific membrane properties of mouse dorsal root ganglion neurons. J. Neurophysiol. 45:1–15.

    Google Scholar 

  • Cole KS, Hodgkin AL (1939) Membrane and protoplasm resistance in the squid giant axon. J. Gen. Physiol. 22:671–687.

    Google Scholar 

  • Dodge FA, Cooley JW (1973) Action potential of the motorneuron. IBM J. Res. Develop. 17:219–229.

    Google Scholar 

  • Eckert H (1982) The vertical-horizontal neuron (VH) in the lobula plate of the blowfly, Phaenicia. J. Comp. Physiol. 149:195–205

    Google Scholar 

  • Eckert H, Dvorak DR (1983) The centrifugal horizontal cells in the lobula plate of the blowfly Phaenicia sericata. J. Insect. Physiol. 29:547–560.

    Google Scholar 

  • Eeckman FH, Theunissen FE, Miller JP (1994) Nemosys: A system for realistic single neuron modeling. In: J Skrzypek, ed. Neural Network Simulation Environments. Kluwer, Boston, pp. 114–135.

    Google Scholar 

  • Egelhaaf M, Borst A (1993) A look into the cockpit of the fly: Visual orientation, algorithms and identified neurons. J. Neurosci. 13:4563–4574.

    Google Scholar 

  • Egelhaaf M, Borst A (1995) Calcium accumulation in visual interneurons of the fly: Stimulus dependence and relationship to membrane potential. J. Neurophysiol. 73:2540–2552.

    Google Scholar 

  • Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A (1993) Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. J. Neurophysiol. 69:340–351.

    Google Scholar 

  • Egelhaaf M, Haag J, Borst A (1994) Processing of synaptic information depends on the structure of the dendritic tree. Neurorep. 6:205–208.

    Google Scholar 

  • Franceschini N, Kirschfeld K (1971) Les phénomènes de pseudopupille dans l'oeil composé de Drosophila.Kybernetik 9:159–182.

    Google Scholar 

  • Gauck V, Egelhaaf M, Borst A (1994) Electronmicroscopical and electrophysiological analysis of synaptic interactions in the circuit mediating figure-ground discrimination in the blowfly Calliphora. In: N Elsner, H Breer, eds. Göttingen Neurobiology Report 1994, Thieme. p. 445.

  • Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature 293:398–399.

    Google Scholar 

  • Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol. Cybern. 44: 141–149.

    Google Scholar 

  • Glantz RM, Viancour T (1983) Integrative properties of crayfish medial giant neuron: Steady-state model. J. Neurophysiol. 50:1122–1142.

    Google Scholar 

  • Haag J, Borst A (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639–641.

    Google Scholar 

  • Haag J, Theunissen FE, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. II. Active membrane properties. J. Computat. Neurosci. (in preparation).

  • Haag J, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. III. Visual response properties. J. Computat. Neurosci. (in preparation).

  • Haag J, Egelhaaf M, Borst A (1992) Dendritic integration of motion information in visual interneurons of the blowfly. Neurosci. Lett. 140:173–176.

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 74:49–70.

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol. Cybern. 45:143–156.

    Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46:67–79.

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: MA Ali, ed. Photoreception and Vision in Invertebrates. Plenum Press, New York. pp. 523–559.

    Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw response in the blowfly Calliphora erythocephala. Proc. R. Soc. Lond. B 219:211–216.

    Google Scholar 

  • Hausen K, Wehrhahn C (1990) Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions. J. Neurosci. 10:351–360.

    Google Scholar 

  • Hausen K, Wolburg-Buchholz K, Ribi WA (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208:371–387.

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blind (H31): A Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124:287–296.

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. A 149:179–193.

    Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erytrocephala. J. Comp. Physiol. A 149:163–177.

    Google Scholar 

  • Hengstenberg R, Hengstenberg B (1980) Intracellular staining of insect neurons with procion yellow. In: NJ Strausfeld, TA Miller, eds. Neuroanatomical Techniques. Springer Verlag, New York. pp. 308–323.

    Google Scholar 

  • Hines M (1995) The neuron simulation program. In: J Skrzypek, ed. Neural Network Simulation Environments. Kluwer, Boston, pp. 147–163.

    Google Scholar 

  • Hochner B, Spira ME (1987) Preservation of motoneuron electrotonic characteristics during postembryonic growth. J. Neurosci. 7:261–270.

    Google Scholar 

  • Hodgkin AL (1947) The membrane resistance of a non-medullated nerve fibre. J. Physiol. 106:305–318.

    Google Scholar 

  • Hodgkin AL, Rushton WAH (1946) The electrical constants of a crustacean nerve fibre. Proc. R. Soc. Lond. B 133:444–479.

    Google Scholar 

  • Holmes WR, Segev I, Rall W (1992) Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. J. Neurophysiol. 68:1401–1420.

    Google Scholar 

  • Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. 472:615–663.

    Google Scholar 

  • Llinas R, Pellionisz A (1977) A computer model of the cerebellar purkinje cells. Neuroscience 2:37–48.

    Google Scholar 

  • Major G, Evans JD, Jack JJB (1993) Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys. J. 65:423–449.

    Google Scholar 

  • Mellon D, Kaars C (1974) Role of regional cellular geometry in conduction of excitation along a sensory neuron. J. Neurophysiol. 37:1228–1238.

    Google Scholar 

  • Moore LE, Yoshii K, Christensen BN (1988) Transfer impedances between different regions of branched excitable cells. J. Neurophysiol. 59:689–705.

    Google Scholar 

  • Pichon Y (1974) Axonal conduction in insects. In: JE Treherne, ed. Insect Neurobiology. North-Holland, Amsterdam, pp. 73–117.

    Google Scholar 

  • Pierantoni R (1976) A look into the cock-pit of the fly. Cell Tissue Res. 171:101–122.

    Google Scholar 

  • Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9:1483–1508.

    Google Scholar 

  • Rall W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge, MA. pp. 9–62.

    Google Scholar 

  • Rall W, Burke RE, Holmes WR, Jack JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72:S159-S186.

    Google Scholar 

  • Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J. Physiol. 474(1):101–118

    Google Scholar 

  • Ross WN, Krauthamer V (1984) Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion. J. Neurosci. 4:659–672.

    Google Scholar 

  • Shaw SR (1972) Decremental conduction of the visual signal in barnacle lateral eye. J. Physiol. 220:145–175.

    Google Scholar 

  • Shelton DP (1985) Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience 14:111–131.

    Google Scholar 

  • Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67:508–529.

    Google Scholar 

  • Staub C, de Schutter E, Knöpfel T (1994) Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar purkinje cells. J. Computat. Neurosci. 1:301–311.

    Google Scholar 

  • Stratford K, Mason A, Larkman A, Major G, Jack J (1989) The modelling of pyramidal neurones in the visual cortex. In: R Durbin, C Miall, G Mitchison, eds. The Computing Neuron. Addison Wesley, Wokingham, UK. pp. 296–321.

    Google Scholar 

  • Strausfeld NJ, Hausen K (1977) The resolution of neuronal assemblies after colbalt injection into neuropil. Proc. R. Soc. Lond. B 199:463–476.

    Google Scholar 

  • Theunissen FE, Tromp J, Eeckman FH, Miller JP (1996) Nemosys 3.1. Available by ftp. Contact fet@phy.ucsf.edu

  • Tobias JM (1960) Further studies on the nature of the excitable system in nerve. J. Gen. Physiol. 43(2):57–71.

    Google Scholar 

  • Traub RD, Llinas R (1979) Hippocampal pyramidal cell: Significance of dendritic ionic conductances for neuronal function and epileptogenesis. J. Neurophysiol 42:476–496.

    Google Scholar 

  • Traub RD, Miles R (1991) Neural Networks of the Hippocampus. Cambridge, Cambridge University Press.

    Google Scholar 

  • van Hateren JH, Laughlin SB (1990) Membrane parameters, signal transmission, and the design of a graded potential neuron. J. Comp. Physiol. A 166:437–448.

    Google Scholar 

  • Wang-Bennett LT, Glantz RM (1987) The functional organization of the crayfish lamina ganglionaris. I. Nonspiking monopolar cells. J. Comp. Physiol. A 161:131–145.

    Google Scholar 

  • Watanabe A, Grundfest H (1961) Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J. Gen. Physiol. 45(1):267–308.

    Google Scholar 

  • Yamagishi S, Grundfest H (1977) Regional differences in K-channels of abdominal and circumesophageal segments of the crayfish medial giant axon. J. Membrane Biol. 31:65–79.

    Google Scholar 

  • Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: A graphical approach to dendritic function. J. Neurosci. 15:1669–1682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, A., Haag, J. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3, 313–336 (1996). https://doi.org/10.1007/BF00161091

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161091

Keywords

Navigation