Skip to main content
Log in

Evolution of DNA damage in irradiated cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Ionizing radiation damage to a mammalian genome is modeled using continuous time Markov chains. Models are given for the initial infliction of DNA double strand breaks by radiation and for the enzymatic processing of this initial damage. Damage processing pathways include DNA double strand break repair and chromosome exchanges. Linear, saturable, or inducible repair is considered, competing kinetically with pairwise interactions of the DNA double strand breaks. As endpoints, both chromosome aberrations and the inability of cells to form clones are analyzed. For the post-irradiation behavior, using the discrete time Markov chain embedded at transitions gives the ultimate distribution of damage more simply than does integrating the Kolmogorov forward equations. In a representative special case explicit expressions for the probability distribution of damage at large times are given in the form used for numerical computations and comparisons with experiments on human lymphocytes. A principle of branching ratios, that late assays can only measure appropriate ratios of repair and interaction functions, not the functions themselves, is derived and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright, N., Tobias, C. A.: Extension of the time-independent repair-misrepair model of cell survival to high LET and multicomponent radiation. In: LeCam, L., Olshen, R. A. (eds.) Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, pp. 397–424. Belmont CA: Wadsworth 1985

    Google Scholar 

  • Albright, N.: A Markov formulation of the repair-misrepair model of cell survival. Radiat. Res. 118, 1–20 (1989)

    Google Scholar 

  • Bedford, J. S., Cornforth, M. N.: Relationship between recovery from sublethal x-ray damage and the rejoining of chromosome breaks in normal human fibroblasts. Radiat. Res. 111, 406–423 (1987)

    Google Scholar 

  • Bender, M. A., Awa, A. A., Brooks, A. L., Evans, H. J., Groer, P. G., Littlefield, L. G., Pereira, C., Preston, R. J., Wachholz, B. W.: Current status of cytogenetic procedures to detect and quantify previous exposures to radiation. Mutat. Res. 196(2), 59–103 (1988)

    Google Scholar 

  • Breimann, L.: Probability and stochastic processes. New York: Houghton Mifflin 1969

    Google Scholar 

  • Brenner, D. J.: Track structure, lesion development, and cell survival. Radiat. Res. 124, S29-S37 (1990)

    Google Scholar 

  • Charlton, D. E., Nikjoo, H., Humm, J. L.: Calculation of initial yields of single and double strand breaks in cell nuclei from electrons, protons and alpha particles. Int. J. Radiat. Biol. 56(1), 1–19 (1989)

    Google Scholar 

  • Cornforth, M. N.: Testing the notion of the one-hit exchange. Radiat. Res. 121, 21–27 (1990)

    Google Scholar 

  • Curtis, S. B.: The lethal and potentially lethal model — a review and recent development. In: Kiefer, J. (ed.) Quantitative mathematical models in radiation biology, pp. 137–146. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • Doraiswamy, L. K., Kulkarni, B. D.: The analysis of chemically reacting systems: a stochastic approach. New York: Gordon and Breach 1987

    Google Scholar 

  • Erdi, P., Toth, J.: Mathematical models of chemical reactions. Princeton, NJ: Princeton University Press 1989

    Google Scholar 

  • Frankenberg-Schwager, M.: Review of repair kinetics for DNA damage induced in eukaryotic cells in vitro by ionizing radiation. Radiother Oncol 14, 307–320 (1989)

    Google Scholar 

  • Friedberg, E. C., Hanawalt, P. C.: Mechanisms and consequences of DNA damage processing. New York: Alan R. Liss 1988

    Google Scholar 

  • Goodhead, D. T.: Relationship of microdosimetric techniques to applications in biological systems. In: Kase, K., Bjarngard, B., Attix, F. (eds.) The Dosimetry of ionizing radiation, vol. II, pp. 1–89. Orlando, FA: Academic Press 1985

    Google Scholar 

  • Hagen, U.: Biochemical aspects of radiation biology. Experientia 45(1), 7–12 (1989)

    Google Scholar 

  • Hahnfeldt, P.: Markov models of radiation damage. Thesis, MIT, 1991

  • Hlatky, L., Sachs, R. K., Hahnfeldt, P.: Reaction kinetics for the development of radiation-induced chromosome aberrations. Int. J. Radiat. Biol. 59(5), 1147–1172 (1991)

    Google Scholar 

  • Hou, Z., Guo, Q.: Homogeneous denumerable Markov processes. Berlin: Springer and Beijing: Science Press 1988

    Google Scholar 

  • Hug, O., Kellerer, M.: Stochastik der Strahlenwirkung. Berlin Heidelberg New York: Springer 1966

    Google Scholar 

  • Iliakis, G.: Radiation-induced potentially lethal damage: DNA lesions susceptible to fixation. Int. J. Radiat. Biol. 53(4), 541–584 (1988)

    Google Scholar 

  • Kellerer, A. M.: Fundamentals of microdosimetry. In: Kase, K., Bjarngard, B., Attix, F. (eds.) The dosimetry of ionizing radiation, pp. 78–162. Orlando, FA: Academic Press 1985

    Google Scholar 

  • Lea, D. E., Catcheside, D. G.: The mechanism of induction by radiation of chromosome aberrations in Tradescantia. J. Genet. 44, 216–245 (1942)

    Google Scholar 

  • Lea, D. E.: Actions of radiations on living cells, second edition. Cambridge: Cambridge University Press 1955

    Google Scholar 

  • Lloyd, D. C., Edwards, A. A., Prosser, J. S., Barjaktarovic, N., Brown, J. K., Horvat, D., Ismail, S. R., Koteles, G. J., Almassy, Z., Krepinsky, A.: A collaborative exercise on cytogenetic dosimetry for simulated whole and partial body accidental irradiation. Mutat. Res. 179(2), 197–208 (1987)

    Google Scholar 

  • McQuarrie, D. A.: Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478 (1967)

    Google Scholar 

  • Obaturov, G. M., Mateeva, L. A., Tyatte, E. G., Yas'kova, E. K. The stochastic model of formation of chromosome aberrations and radiation inactivation of cells (in Russian). Radiobiol. 20, 803–809 (1980)

    Google Scholar 

  • Radford, I. R.: The dose-response for low-LET radiation-induced DNA double-strand breakage: methods of measurement and implications for radiation action models. Int. J. Radiat. Biol. 54(1), 1–11 (1988)

    Google Scholar 

  • Reddy, N. M. S., Mayer, P. J., Lange, C. S.: The saturated repair kinetics of Chinese hamster V79 cells suggests a damage accumulation-interaction model of cell killing. Radiat. Res. 121, 304–311 (1990)

    Google Scholar 

  • Revell, S. H.: Relationships between chromosome damage and cell death. In: Ishihara, T., Sasaki, M. S. (eds.) Radiation-induced chromosome damage in man, pp. 215–233. New York: Alan R. Liss 1983

    Google Scholar 

  • Sachs, R. K., Hlatky, L.: Stochastic dose-rates in radiation cell survival models. Rad. Environ. Biophys. 29, 169–184 (1990)

    Google Scholar 

  • Sachs, R. K., Hlatky, L., Hahnfeldt, P., Chen, P-L.: Incorporating dose rate effects in Markov radiation cell-survival models. Radiat. Res. 124, 216–226 (1990)

    Google Scholar 

  • Sachs, R. K., Chen, P-L., Hahnfeldt, P., Lai, D., Hlatky, L.: DNA damage in non-proliferating cells subjected to ionizing radiation at various dose rates. (In preparation, 1991)

  • Savage, J. R. K.: The production of chromosomal structural changes by radiation: an update of Lea (1946), Chapter VI. Br. J. Radiol. 62(738), 507–520 (1989)

    Google Scholar 

  • Shadley, J. D., Afzal, V., Wolff, S.: Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes. Radiat. Res. 111(3), 511–517 (1987)

    Google Scholar 

  • Tobias, C. A., Blakely, E. A., Ngo, F. Q. H., Yang, T. C. Y.: The repair-misrepair model of cell survival. In: Meyn, R. E., Withers, H. R. (eds.) Radiation biology in Cancer Research, pp. 195–229. New York: Raven 1980

    Google Scholar 

  • Virsik, R. P., Harder, D.: Recovery kinetics of radiation-induced chromosome aberrations in human G 0 lymphocytes. Radiat. Environ. Biophys. 18, 221–228 (1980)

    Google Scholar 

  • Wallace, S., Painter, R.: Ionizing radiation damage to DNA: molecular aspects. J. Cell. Biochem. Supplement 14A, 21–84 (1990)

    Google Scholar 

  • Ward, J. F.: DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. In: Cohn, W., Moldave, K. (eds.) Prog. Nucleic Acid Res. Mol. Biol., vol. 35, pp. 95–125. New York: Academic Press 1988

    Google Scholar 

  • Ward, J. F.: The yield of DNA double strand breaks produced intracellularly by ionizing radiation: a review. Int. J. Radiat. Biol. 57(6), 1141–1150 (1990)

    Google Scholar 

  • Weber, K. J.: Models of cellular radiation action — an overview. In: Kiefer, J. (ed.) Quantitative mathematical models in radiation biology, pp. 3–28. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • Wolff, R. W.: Stochastic modeling and the theory of queues. Englewood Cliffs, NJ: Prentice Hall 1989

    Google Scholar 

  • Yang, G. L., Swenberg, C. E.: Stochastic models for cells exposed to ionizing radiation. In: Eisenberg, J., Witten, M. (eds) Modelling of Biomedical Systems, pp. 85–89. Amsterdam New York: Elsevier 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in # DMS-9025103

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahnfeldt, P., Sachse, R.K. & Hlatky, L.R. Evolution of DNA damage in irradiated cells. J. Math. Biol. 30, 493–511 (1992). https://doi.org/10.1007/BF00160533

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160533

Key words

Navigation