Skip to main content
Log in

Molecular phylogeny of Drosophila based on ribosomal RNA sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Nucleotide sequences of 72 species of Drosophilidae were determined for divergent D1 and D2 domains (representing 200 and 341 nucleotides respectively in D. melanogaster) of large ribosomal RNA, using the rRNA direct sequencing method. Molecular phylogenetic trees were reconstructed using both distance and parsimony methods and the robustness of the nodes was evaluated by the bootstrap procedure. The trees obtained by these methods revealed four main lineages or clades which do not correspond to the taxonomical hierarchy. In our results, the genus Chymomyza is associated with the subgenus Scaptodrosophila of the genus Drosophila and their cluster constitutes the most ancient clade. The two other clades are constituted of groups belonging to the subgenus Sophophora of the genus Drosophila: the so-called Neotropical clade including the willistoni and saltans groups and the obscura-melanogaster clade itself split into three lineages: (1) obscura group + ananassae subgroup, (2) montium subgroup, and (3) melanogaster + Oriental subgroups. The fourth clade, the Drosophila one, contains three lineages. D. polychaeta, D. iri, and D. fraburu are branched together and constitute the most ancient lineage; the second lineage includes the annulimana, bromeliae, dreyfusi, melanica, mesophragmatica, repleta, robusta, and virilis groups. The third lineage is composed of the immigrans and the cardini, funebris, guaramunu, guarani, histrio, pallidipennis, quinaria, and tripunctata groups. The genera Samoaia, Scaptomyza, and Zaprionus are branched within the Drosophila clade. Although these four clades appear regularly in almost all tree calculations, additional sequencing will be necessary to determine their precise relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M (1989) The family Drosophilidae. In: Drosophila a laboratory handbook. Cold Spring Harbor Laboratory Press, New York, pp 1075–1160

    Google Scholar 

  • Beverley SM, Wilson AC (1982) Molecular evolution in Drosophila and the higher Diptera. I. Microcomplement fixation studies of a larval hemolymph protein. J Mol Evol 18:251–264

    Google Scholar 

  • Beverley SM, Wilson AC (1984) Molecular evolution in Drosophila and the higher Diptera. 11. A time scale for fly evolution. J Mol Evol 21:1–13

    Google Scholar 

  • Bock IR (1978) The subgenus Scaptodrosophila (Diptera: Drosophilidae). Syst Entomol 3:91–102

    Google Scholar 

  • Burla H (1954) Zur Kenntnis der Drosophilidan der Elfenbeinküste (Französisch West-Afrika). Rev Suisse Zool 61:1–218

    Google Scholar 

  • Caccone A, Gleason JM, Powell JR (1992) Complementary DNA-DNA hybridization in Drosophila. J Mol Evol 34:130–140

    Google Scholar 

  • DeSalle R, Grimaldi DA (1991) Morphological and molecular systematics of the Drosophilidae. Annu Rev Ecol Syst 22: 447–475

    Google Scholar 

  • DeSalle R (1992) The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol Phyl Evol 1:31–40

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Grimaldi DA (1990) A phylogenetic revised classification of genera in the Drosophilidae (Diptera). Bull Am Mus Nat Hist 197:1–139

    Google Scholar 

  • Hackman W (1982) The relation between the genera Scaptomyza and Drosophila (Diptera, Drosophilidae). Ann Entomol Fenn 49:97–104

    Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Google Scholar 

  • Lastovka P, Macà J (1978) European species of the Drosophila subgenus Lordiphosa (Diptera, Drosophilidae). Acta Entomol Bohemoslov 75:404–420

    Google Scholar 

  • Levitan M (1986) The robusta and melanica groups. In: Ashburner M, Thompson JN, Carson HL (eds) The genetics and biology of Drosophila vol 3b. Academic Press, London, pp 141–192

    Google Scholar 

  • Maccecchini ML, Rudin Y, Blobel G, Schatz G (1979) Import of proteins into mitochondria: precursor forms of extramito-chondrially made Fl-ATPase subunits in yeast. Proc Natl Acad Sci USA 76:343–347

    Google Scholar 

  • MacIntyre RJ, Collier GE (1986) Protein evolution in the genus Drosophila. In: Ashburner M, Thompson JN, Carson HL (eds) The genetics and biology of Drosophila, vol 3e. Academic Press, London, pp 39–146

    Google Scholar 

  • Maruyama K, Hartl DL (1991) Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol 33:514–524

    Google Scholar 

  • Michot B, Bachellerie JP (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69:11–23

    Google Scholar 

  • Okada T (1989) A proposal of establishing tribes for the family Drosophilidae with keys to tribes and genera (Diptera). Zool Sci 6:391–399

    Google Scholar 

  • Pélandakis M, Higgins DG, Solignac M (1991) Molecular phylogeny of the subgenus Sophophora of Drosophila derived from the large subunit of ribosomal RNA sequences. Genetica 84:87–94

    Google Scholar 

  • Qu LH, Michot B, Bachellerie JP (1983) Improved methods for structure probing in large RNAs: a rapid “heterologous” sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5′ terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res 11:5903–5920

    Google Scholar 

  • Rousset F, Pélandakis M, Solignac M (1991) Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci USA 88:10032–10036

    Google Scholar 

  • Ruttkay H, Solignac M, Sperlich D (1992) Nuclear and mitochondrial ribosomal RNA variability in the obscura group of Drosophila. Genetica 85:143–179

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Spicer GS (1988) Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis. J Mol Evol 27:250–260

    Google Scholar 

  • Stalker HD (1972) Intergroup phylogenies in Drosophila as determined by comparisons of salivary banding patterns. Genetics 70:457–474

    Google Scholar 

  • Sturtevant AH (1942) The classification of the genus Drosophila with descriptions of nine new species. Univ Tex Publ 4213: 5–51

    Google Scholar 

  • Sullivan DT, Atkinson PW, Starmer WT (1990) Molecular evolution of the alcohol dehydrogenase genes in the genus Drosophila. In: Hecht MK, Wallace B, MacIntyre RJ (eds) Evolutionary biology, vol 24. Plenum, New York, pp 107–147

    Google Scholar 

  • Swofford DL (1990) Phylogenetic analysis using parsimony (version 3.0). Illinois Natural History Survey, Champaign

    Google Scholar 

  • Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol 5:366–376

    Google Scholar 

  • Throckmorton LH (1962) The problem of phylogeny in the genus Drosophila. Univ Tex Publ 6205:207–343

    Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Invertebrates of genetic interest. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Throckmorton LH (1982) Pathways of evolution in the genus Drosophila and the founding of the repleta group. In: Barker JFS, Starmer WT (eds) Ecological genetics and evolution. Academic Press, Australia, pp 33–47

    Google Scholar 

  • Tsacas L, Chassagnard MT, David JR (1988) Un nouveau groupe d'espèces afrotropicales anthophiles dans le sous-genre Scaptodrosophila du genre Drosophila (Diptera: Drosophilidae). Ann Soc Ent Fr (N S) 24:181–202

    Google Scholar 

  • Vouidibio J (1977) Biologie évolutive et écophysiologie comparée de deux espe\`ces de drosophiles africaines: Drosophila iri et Drosophila fraburu (Diptères—Drosophilidae). Thèse d'universitd Lyon, 141 p

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Google Scholar 

  • Zwiebel LJ, Cohn VH, Wright DR, Moore GP (1982) Evolution of single-copy DNA and the ADH gene in seven drosophilids. J Mol Evol 19:62–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Pelandakis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pélandakis, M., Solignac, M. Molecular phylogeny of Drosophila based on ribosomal RNA sequences. J Mol Evol 37, 525–543 (1993). https://doi.org/10.1007/BF00160433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160433

Key words

Navigation