Skip to main content
Log in

The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: Consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The small- and large-subunit mitochondrial ribosomal RNA genes (mt-s-rRNA and mt-1-rRNA) of the nematode worms Caenorhabditis elegans and Ascaris suum encode the smallest rRNAs so far reported for metazoa. These size reductions correlate with the previously described, smaller, structurally anomalous mt-tRNAs of C. elegans and A. suum. Using primer extension analysis, the 5′ end nucleotides of the mt-s-rRNA and mt-1-rRNA genes were determined to be adjacent to the 3′ end nucleotides of the tRNAGlu and tRNAHis genes, respectively. Detailed, consensus secondary-structure models were constructed for the mt-s-rRNA genes and the 3′ 64% of mt-1-rRNA genes of the two nematodes. The mt-s-rRNA secondary-structure model bears a remarkable resemblance to the previously defined universal core structure of E. coli 16S rRNA: most of the nucleotides that have been classified as variable or semiconserved in the E. coli model appear to have been eliminated from the C. elegans and A. suum sequences. Also, the secondary structure model constructed for the 3′ 64% of the mt-1-rRNA is similar to the corresponding portion of the previously defined E. coli 23S rRNA core secondary structure. The proposed C. elegans/A. suum mt-s-rRNA and mt-1-rRNA models include all of the secondary-structure element-forming sequences that in E. coli rRNAs contain nucleotides important for A-site and P-site (but not E-site) interactions with tRNAs. Sets of apparently homologous sequences within the mt-s-rRNA and mt-1-rRNA core structures, derived by alignment of the C. elegans and A. suum mt-rRNAs to the corresponding mt-rRNAs of other eukaryotes, and E. coli rRNAs were used in maximum-likelihood analyses. The patterns of divergence of metazoan phyla obtained show considerable agreement with the most prevalent metazoan divergence patterns derived from more classical, morphological, and developmental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC,Sanger F, Young IG (1982) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Arnason U, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol 33:556–568

    Google Scholar 

  • Arnason U, Gullberg A (1993) Comparison between the complete mtDNA sequences of the blue and the fm whale, two species that can hybridize in nature. J Mol Evol 37:312–322

    Google Scholar 

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal Halichverus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    Google Scholar 

  • Arnason U, Johansson E (1992) The complete mitochondrial DNA sequence of the harbor seal, Phoca vilulina. J Mol Evol 35:493–505

    Google Scholar 

  • Arcari P, Brownlee GG (1980) The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res 8:5207–5212

    Google Scholar 

  • Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32:511–520

    Google Scholar 

  • Bibb MJ, van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Brimacombe R, Atmadja J, Stiege W, Schuler D (1988) A detailed model of the three-dimensional structure of Escherichia coli 16S ribosomal RNA in situ in the 30S subunit. J Mol Biol 199:115–136

    Google Scholar 

  • Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77:201–204

    Google Scholar 

  • Brosius J, Palmer ML, Kennedy PS, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Google Scholar 

  • Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J Biol Chem 264:10965–10975

    Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mol Evol 28:98–112

    Google Scholar 

  • Clary DO, Wahleithner JA, Wolstenholme DR (1983) Transfer RNA genes in Drosophila mitochondrial DNA: related 5′ flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res 11:2411–2425

    Google Scholar 

  • Clary DO, Wolstenholme DR (1983) Genes for cytochrome c oxidase subunit I, URF2 and three tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res 11:6859–6872

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985a) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Google Scholar 

  • Clary DO, Wolstenholme DR (1985b) The ribosomal genes of Drosophila mitochondrial DNA. Nucleic Acids Res 113:4029–4045

    Google Scholar 

  • Clary DO, Wolstenholme DR (1987) Drosophila mitochondrial DNA: conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 25:116–125

    Google Scholar 

  • Crozier RH, Crozier YC (1993) The mitochondrial genome of the honey bee Apis melifera: complete sequence and genomic organization. Genetics 133:97–117

    Google Scholar 

  • Dahlberg AE (1989) The functional role of ribosomal RNA in protein synthesis. Cell 57:525–529

    Google Scholar 

  • Dams E, Hendriks L, Van de Peer Y, Neefs J-M, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16s:r87-r173

    Google Scholar 

  • de Bruijn MHL, Schreier PH, Eperon IC, Barrell BG, Chen EY, Armstrong PW, Wong JFH, Roe BA (1980) A mammalian mitochondrial serine transfer RNA lacking the “dihydrouridine” loop and stem. Nucleic Acids Res 8:5213–5222

    Google Scholar 

  • de Bruijn MHL (1983) Drosophila melanogaster mitochondrial DNA: a novel organization and genetic code. Nature 304:234–241

    Google Scholar 

  • de Bruijn MHL, Klug A (1983) A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihy-drouridine’ loop and stem. EMBO J 2:1309–1321

    Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol 26:157–164

    Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Google Scholar 

  • Fukami-Kobayashi K, Tateno Y (1991) Robustness of maximum likelihood tree estimation against different patterns of base substitutions. J Mol Evol 32:79–91

    Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    Google Scholar 

  • Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNASerAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 28:374–387

    Google Scholar 

  • Glotz C, Zweib C, Brimacombe R (1981) Secondary structure of the large subunit ribosomal RNA from Escherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res 9:3287–3306

    Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit rRNA. Nucleic Acids Res 12:5837–5852

    Google Scholar 

  • Gutell RR (1993) Collections of small subunit (16S and 16S-like) ribosomal RNA structures. Nucleic Acids Res 21:3051–3054

    Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216

    Google Scholar 

  • Gutell RR, Noller HF, Woese CR (1986) Higher order structure in ribosomal RNA. EMBO J 5:1111–1113

    Google Scholar 

  • Gutell RR, Gray MW, Schare MN (1993) A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 21:3055–3074

    Google Scholar 

  • Gutell RR, Fox GE (1988) A compilation of large subunit rRNA sequences presented in a structural format. Nucleic Acids Res 16s:r175-r269

    Google Scholar 

  • Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32:443–445

    Google Scholar 

  • Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. Mol Biol Evol 3:1–18

    Google Scholar 

  • Jacobs HT, Elliot DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217

    Google Scholar 

  • Li M, Tzagoloff A, Underbrink-Lyon N, Martin N (1982) Identification of the paromomycin-resistance mutation in the 15S rRNA gene of the yeast mitochondria. J Biol Chem 257:5921–5928

    Google Scholar 

  • Melancon P, Lemieux C, Brakier-Gingras L (1988) A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 16:9631–9639

    Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–394

    Google Scholar 

  • Moazed D, Noller HF (1989) Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57:585–597

    Google Scholar 

  • Moazed D, Noller HF (1990) Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. J Mol Biol 211:135–145

    Google Scholar 

  • Moazed D, Noller HF (1991) Sites of interaction of the CCA end of peptidyl-tRNA with 23S rRNA. Proc Natl Acad Sci USA 88:3725–3728

    Google Scholar 

  • Neefs JM, Van de Peer Y, Hendriks L, De Wacher R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18s:2237–2317

    Google Scholar 

  • Noller HF (1993) tRNA-rRNA interactions and peptidyl transferase. FASEB J 7:87–89

    Google Scholar 

  • Noller HF, Asire M, Barta A, Douthwaite S, Goldstein T, Gutell RR, Moazed D, Normanly J, Prince JB, Stern S, Triman K, Turner S, Van Stolk B, Wheaton V, Weiser B, Woese CR (1986) Studies on the structure and function of ribosomal RNA. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 143–163

    Google Scholar 

  • Okimoto R, Wolstenholme DR (1990) A set of tRNAs that lack either the TΨPC arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J 9:3405–3411

    Google Scholar 

  • Okimoto R, Macfarlane JL, Wolstenholme DR (1990) Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res 18:6113–6118

    Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498

    Google Scholar 

  • Roe BA, Ma DP, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of the Xenopus levis mitochondrial genome. J Biol Chem 260:9759–9774

    Google Scholar 

  • Saitou N (1988) Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol 27:261–273

    Google Scholar 

  • Seilhamer JJ, Olsen GJ, Cummings DJ (1984a) Paramecium mitochondrial genes. 1 Small subunit rRNA gene sequence and microevolution. J Biol Chem 259:5167–5172

    Google Scholar 

  • Seilhamer JJ, Gutell RR, Cummings DJ (1984b) Paramecium mitochondrial genes. 2 Large subunit rRNA gene sequence and microevolution. J Biol Chem 259:5173–5181

    Google Scholar 

  • Sor F, Fukuhara H (1983) Complete DNA sequence coding for the large ribosomal RNA of yeast mitochondria. Nucleic Acids Res 11:339–348

    Google Scholar 

  • Stern S, Weiser B, Noller HF (1988) Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol 204:447–481

    Google Scholar 

  • Stiegler P, Carbon P, Ebel JP, Ehresmann C (1981) A general secondary-structure model for procaryotic and eukaryotic RNAs of the small ribosomal subunits. Eur J Biochem 120:487–495

    Google Scholar 

  • Thomas WD, Wilson AC (1991) Mode and tempo of molecular evolution in the nematode Caenorhabditis: cytochrome oxidase II and calmodulin sequences. Genetics 128:269–279

    Google Scholar 

  • Tzeng C-S, Hui C-F, Shen S-C, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20:4853–4858

    Google Scholar 

  • Wilson EO, Eisner T, Briggs WR, Dickerson RE, Metzenberg RL, O'Brien RD, Susman M, Boggs WE (1989) Life on earth, 2nd ed. Sinauer, Sunderland, MA

    Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. In: DR Wolstenholme, KW Jeon (eds) Mitochondrial genomes. Int Rev Cyto, vol 141. Academic Press, New York, pp 173–216

    Google Scholar 

  • Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84:1324–1328

    Google Scholar 

  • Wolstenholme DR, Okimoto R, Macfarlane JL (1994) Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucl Acids Res 22:4300–4306

    Google Scholar 

  • Zwieb C, Glotz C, Brimacombe R (1981) Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. Nucleic Acids Res 9:3621–3640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: D.R. Wolstenholme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okimoto, R., Macfarlane, J.L. & Wolstenholme, D.R. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: Consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 39, 598–613 (1994). https://doi.org/10.1007/BF00160405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160405

Key words

Navigation