Skip to main content
Log in

Coexistence of two types on a single resource in discrete time

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Armstrong and McGehee (1980) have shown that two species modeled in continuous time can coexist on a single resource provided that one species oscillates autonomously. This paper demonstrates the parallel result in discrete time. I consider a deterministic model of two asexual types in a single patch competing for a single resource, and show that such systems generically produce oscillatory coexistence or bistability if one of the types displays periodic or chaotic behavior in isolation. The conditions for coexistence or bistability are derived in terms of the convexity of the functions describing fitness as a function of resource availability. I also analyze whether or not a stable type, a type with a stable equilibrium population size when considered in isolation, can invade a periodic orbit of an unstable type, and show that the same convexity condition distinguishes these two cases. The widely considered exponential or Ricker model for population dynamics lies on the boundary between the two cases and is highly degenerate in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R. A., McGehee, R.: Coexistence of species competing for shared resources. Theor. Popul. Biol. 9, 471–486 (1976)

    Article  MathSciNet  Google Scholar 

  • Armstrong, R. A., McGehee, R.: Competitive exclusion. Am. Nat. 115, 151–170 (1980)

    Article  MathSciNet  Google Scholar 

  • Asmussen, M. A., Feldman, M.: Density-dependent selection I: A stable feasible equilibrium may not be attainable. J. Theor. Biol. 64, 603–618 (1977)

    Article  Google Scholar 

  • Billingsley, P.: Probability and measure. New York: Wiley 1986

    MATH  Google Scholar 

  • Chesson, P. L.: Environmental variability and the coexistence of species. In: Case, T., Diamond, J. (eds.) Community ecology, pp. 240–256. New York: Harper and Row 1986

    Google Scholar 

  • Christiansen, F. B.: Frequency dependence and competition. Phil. Trans. R. Soc. Lond. B319, 587–600 (1988)

    Google Scholar 

  • Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston: Birkhäuser 1986

    MATH  Google Scholar 

  • Crow, J. F., Kimura, M.: An introduction to population genetics theory. New York: Harper and Row 1970

    MATH  Google Scholar 

  • Cushing, J.: Two species competition in a periodic environment. J. Math. Biol. 10, 385–400 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J., Li, J.: On Ebenman's model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, 687–713 (1989)

    MATH  Google Scholar 

  • de Mottoni, P., Schiaffino, A.: Competition systems with periodic coefficients: a geometric approach. J. Math. Biol. 11, 319–335 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Hadeler, K. P., Gerstman, I.: The discrete Rosenzweig model. Math. BioSci. 98, 49–72 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Hassell, M., Lawton, J. H., May, R. M.: Patterns of dynamical behaviour in single-species populations. J. Anim. Ecol. 45, 471–486 (1976)

    Article  Google Scholar 

  • Iwasa, Y., Teramoto, E.: A criterion of life history evolution based on density dependent selection. J. Theor. Biol. 84, 545–566 (1980)

    Google Scholar 

  • John, F.: Partial differential equations. New York: Springer 1986

    Google Scholar 

  • Kaplan, W.: Advanced calculus. New York: Addison-Wesley 1973

    MATH  Google Scholar 

  • Levin, S. A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970)

    Article  Google Scholar 

  • Levin, S. A., Levin, J. E., Paine, R. T.: Snowy owl predation on short-eared owls. The Condor 79, 395 (1977)

    Google Scholar 

  • May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  • Maynard Smith, J., Harper, D. G. C.: The evolution of aggression: can selection generate variability? Philos. Trans. R. Soc. Lond., B319, 557–571 (1988)

    Google Scholar 

  • Paine, R. T., Levin, S. A.: Disturbance, patch formation, and community structure. Proc. Nat. Acad. Sci. 71, 2744–2747 (1974)

    Article  MATH  Google Scholar 

  • Poulsen, E. T.: A model for population regulation with density and frequency-dependent selection. J. Math. Biol. 8, 325–343 (1979)

    MATH  MathSciNet  Google Scholar 

  • Roughgarden, J.: Density-dependent natural selection. Ecology 52, 453–468 (1971)

    Article  Google Scholar 

  • Roughgarden, J.: Theory of population genetics and evolutionary ecology. New York: Macmillan 1979

    Google Scholar 

  • Selgrade, J. F., Namkoong, G.: Stable periodic solutions for two species, density dependent coevolution. J. Math. Biol. 22, 69–80 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Slatkin, M., Wilson, D. S.: Coevolution in structured demes. Proc. Nat. Acad. Sci. 76, 2084–2987 (1979)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, F.R. Coexistence of two types on a single resource in discrete time. J. Math. Biol. 28, 695–713 (1990). https://doi.org/10.1007/BF00160232

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160232

Key words

Navigation