Skip to main content
Log in

A size dependent predator-prey interaction: who pursues whom?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the properties of an (age, size) -structured model for a population of Daphnia that feeds on a dynamical algal food source. The stability of the internal equilibrium is studied in detail and combined with numerical studies on the dynamics of the model to obtain insight in the relation between individual behaviour and population dynamical phenomena. Particularly the change in the (age, size)-relation with a change in the food availability seems to be an important behavioural mechanism that strongly influences the dynamics. This influence is partly stabilizing and partly destabilizing and leads to the coexistence of a stable equilibrium and a stable limit cycle or even coexistence of two stable limit cycles for the same parameter values. The oscillations in this case are characterized by drastic changes in the size-structure of the population during a cycle. In addition the model exhibits the usual predator-prey oscillations that characterize Lotka-Volterra models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazykin, A. D., Berezovskaya, F. S., Denisov, G. A., Kuznetzov, Yu. A.: The influence of predator saturation effect and competition among predators on predator-prey system dynamics. Ecol. Model. 14, 39–57 (1981)

    Article  Google Scholar 

  2. Beverton, R. J. H., Holt, S. J.: The dynamics of exploited fish populations. London: Her Majesty's Stationary Office 1957

    Google Scholar 

  3. De Roos, A. M.: Numerical methods for structured population models: the escalator boxcar train. Num. Meth. Part. Differ. Equations 4, 173–195 (1988)

    Article  MATH  Google Scholar 

  4. De Roos, A. M., Diekmann, O., Metz, J. A. J.: The escalator boxcar train: basic theory and an application to Daphnia population dynamics. CWI report AM-R8814, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands 1989

    Google Scholar 

  5. Huston, M. A., DeAngelis, D. L., Post, W. M.: New computer models unify ecological theory. Bioscience 38, 682–691 (1989)

    Article  Google Scholar 

  6. Jansen, V. A. A., Nisbet, R. M., Gurney, W. S. C.: Generation cycles in stage structured populations. Bull. Math. Biol. (in press)

  7. Kooijman, S. A. L. M., Metz, J. A. J.: On the dynamics of chemically stressed populations: The deduction of population consequences from effects on individuals. Ecotox. Env. Saf. 8, 254–274 (1984)

    Article  Google Scholar 

  8. McCauley, E., Murdoch, W. W.: Cyclic and stable populations: plankton as a paradigm. Am. Natur. 129, 97–121 (1987)

    Article  Google Scholar 

  9. Metz, J. A. J., Diekmann, O.: The dynamics of physiologically structured populations. (Lect. Notes Biomath., vol. 68) Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  10. Metz, J. A. J., De Roos, A. M., Van den Bosch, F.: Population models incorporating physiological structure: a quick survey of the basic concepts and an application to size-structured population dynamics in waterfleas. In: Ebenman, B., Persson, L. (eds.) Size-structured populations: ecology and evolution. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  11. Murphy, L. F.: A nonlinear growth mechanism in size-structured population dynamics. J. Theor. Biol. 104, 493–506 (1983)

    Article  Google Scholar 

  12. Nisbet, R. M., Gurney, W. S. C.: Modelling fluctuating populations. New York: Wiley 1982

    MATH  Google Scholar 

  13. Nisbet, R. M., Gurney, W. S. C.: “Stage-structure” models of uniform larval competition. In: Levin, S. A., Hallam, T. G. (eds.) Mathematical ecology. Proceedings Trieste 1982. (Lect. Notes Biomath. vol. 54, pp. 97–113) Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  14. Rosenzweig, M. L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science (Wash., D.C.) 171, 385–387 (1971)

    Google Scholar 

  15. Sauer, J. R., Slade, N. A.: Size-based demography of vertebrates. Ann. Rev. Ecol. Syst. 18, 71–90 (1987)

    Article  Google Scholar 

  16. Thieme, H. R.: Well-posedness of physiologically structured population models for Daphnia magna. J. Math. Biol. 26, 299–317 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Van den Bosch, F., Metz, J. A. J., Diekmann, O.: The velocity of spatial population expansion. CWI report AM-R8812, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands 1988

    Google Scholar 

  18. Werner, E. E., Gilliam, J. F.: The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15, 393–425 (1984)

    Article  Google Scholar 

  19. Wollkind, D. J., Collings, J. B., Logan, J. A.: Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees. Bull. Math. Biol. 50, 379–409 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Roos, A.M., Metz, J.A.J., Evers, E. et al. A size dependent predator-prey interaction: who pursues whom?. J. Math. Biol. 28, 609–643 (1990). https://doi.org/10.1007/BF00160229

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160229

Key words

Navigation