Skip to main content
Log in

Cytochemical localization of cyclic 3′,5′-nucleotide phosphodiesterase activity in the rat olfactory mucosa

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Cyclic 3′,5′-nucleotide phosphodiesterase activity was demonstrated cytochemically in the rat olfactory mucosa using cyclic AMP as substrate. Strong activity was observed on the plasma membrane of the cilia, dendritic knob and axon of olfactory cells; weak activity was apparent on the membrane of the dendritic shaft and cell body. This suggests that the cyclic AMP produced by odorant-sensitive adenylate cyclase in the dendritic terminal acts mainly in its original site and to a lesser extent in the dendritic shaft and cell body. The enzyme also hydrolysed cyclic GMP but the hydrolysis was not as great as in the case of cyclic AMP. Besides its presence in olfactory cells, enzymatic activity was also observed on the plasma membrane of basal cells and certain supporting cells with an astrocyte-like morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anholt, R. R. H., Farmer, R. W. & Karavanich, C. A. (1989) Excitation by odorants of olfactory receptor cells: molecular interactions at the ciliary membrane. In Chemical Senses (edited by Brand, J. G., Teeter, J. H., Cagan, R. H. & Kare, M. R.) Vol. 1. pp. 347–61. New York, Basel: Marcel Dekker.

    Google Scholar 

  • Asanuma, N. & Nomura, H. (1990) Cyclic nucleotide phosphodiesterase activity in rat olfactory mucosa (cytochemical study). Chem. Senses 15, 389.

    Google Scholar 

  • Asanuma, N. & Nomura, H. (1991) Cytochemical localization of adenylate cyclase activity in rat olfactory cells. Histochem. J. 23, 83–90.

    Google Scholar 

  • Ashcroft, S. J. H., Randle, P. J. & Taljedal, I.-B. (1972) Cyclic nucleotide phosphodiesterase activity in normal mouse pancreatic islets. FEBS Lett. 20, 263–6.

    Google Scholar 

  • Boekhoff, I., Tareilus, E., Strotmann, J. & Breer, H. (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J. 9, 2453–8.

    Google Scholar 

  • Borgers, M. (1973) The cytochemical application of new potent inhibitors of alkaline phosphatases. J. Histochem. Cytochem. 21, 812–24.

    Google Scholar 

  • Breer, H., Boekhoff, I. & Tareilus, E. (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–8.

    Google Scholar 

  • Cheung, W. Y. (1967) Cyclic 3′,5′-nucleotide phosphodiesterase: pronounced stimulation by snake venom. Biochem. Biophys. Res. Commun. 29, 478–82.

    Google Scholar 

  • Cheung, W. Y. (1969) Cyclic 3′,5′-nucleotide phosphodiesterase: preparation of a partially inactive enzyme and its subsequent stimulation by snake venom. Biochim. Biophys. Acta 191, 303–15.

    Google Scholar 

  • Dhallan, R. S., Yau, K.-W., Schrader, K. A. & Reed, R. R. (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–7.

    Google Scholar 

  • Firestein, S., Darrow, B. & Shepherd, G. M. (1991a) Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein-mediated cAMP second messenger system. Neuron 6, 825–35.

    Google Scholar 

  • Firestein, S., Zufall, F. & Shepherd, G. M. (199lb) Single odorsensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides. J. Neurosci. 11, 3565–72.

    Google Scholar 

  • Florendo, N. T., Barrnett, R. J. & Greengard, P. (1971) Cyclic 3′,5′-nucleotide phosphodiesterase: cytochemical localization in cerebral cortex. Science 173, 745–7.

    Google Scholar 

  • Frings, S. & Lindemann, B. (1991) Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides. J. Gen. Physiol. 97, 1–16.

    Google Scholar 

  • Getchell, T. V. (1977) Analysis of intracellular recordings from salamander olfactory epithelium. Brain Res. 123, 275–86.

    Google Scholar 

  • Gold, G. H., Lowe, G. & Nakamura, T. (1989) A role for cyclic AMP in olfactory transduction. In Chemical Senses (edited by Brand, J. G., Teeter, J. H., Cagan, R. H. & Kare, M. R.) Vol. 1. pp. 311–7. New York, Basel: Marcel Dekker.

    Google Scholar 

  • Graziadei, P. P. C. (1971) The olfactory mucosa of vertebrates. In Handbook of Sensory Physiology (edited by Beidler, L. M.) Vol. 4, Pt 1. pp. 27–58. Berlin: Springer-Verlag.

    Google Scholar 

  • Graziadei, P. P. C. (1973) Cell dynamics in the olfactory mucosa. Tissue Cell 5, 113–31.

    Google Scholar 

  • Hidaka, H., Shibuya, M., Asano, T. & Hara, F. (1975) Cyclic nucleotide phosphodiesterase of human cerebrospinal fluid. J. Neurochem. 25, 49–53.

    Google Scholar 

  • Kurahashi, T. (1990) The response induced by intracellular cyclic AMP in isolated olfactory receptor cells of the newt. J. Physiol. 430, 355–71.

    Google Scholar 

  • Kurahashi, T. & Kaneko, A. (1991) High density cAMP-gated channels at the ciliary membrane in the olfactory receptor cell. NeuroReport 2, 5–8.

    Google Scholar 

  • Lowe, G., Nakamura, T. & Gold, G. H. (1989) Adenylate cyclase mediates olfactory transduction for a wide variety of odorants. Proc. Natl Acad. Sci. USA 86, 5641–5.

    Google Scholar 

  • Nakamura, T. & Gold, G. H. (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–4.

    Google Scholar 

  • Nomura, H. (1978) Histochemical localization of adenylate cyclase and phosphodiesterase activities in the foliate papillae of the rabbit. I. Light microscopic observations. Chem. Senses Flavour 3, 319–24.

    Google Scholar 

  • Pace, U. & Lancet, D. (1986) Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc. Natl Acad. Sci. USA 83, 4947–51.

    Google Scholar 

  • Pace, U., Hanski, E., Salomon, Y. & Lancet, D. (1985) Odorantsensitive adenylate cyclase may mediate olfactory reception. Nature 316, 255–8.

    Google Scholar 

  • Peytremann, A., Nicholson, W. E., Liddle, G. W., Hardman, J. G. & Sutherland, E. W. (1973) Effects of methylxanthines on adenosine 3′,5′-monophosphate and corticosterone in the rat adrenal. Endocrinology 92, 525–30.

    Google Scholar 

  • Poeggel, G., Luppa, H., & Ludwig, A. (1987a) Histochemistry of cyclic nucleotide phosphodiesterase in nervous tissue. I. Enzymehistochemical investigations. Acta Histochem. Cytochem. 20, 375–80.

    Google Scholar 

  • Poeggel, G., Luppa, H. & Ludwig, A. (1987b) Histochemistry of cyclic nucleotide phosphodiesterase in nervous tissue. II. Immunohistochemical investigations. Acta Histochem. Cytochem. 20, 381–6.

    Google Scholar 

  • Poeggel, G., Luppa, H. & Schmidt, A. (1988) Histochemistry of cyclic nucleotide phosphodiesterase in nervous tissue. III. Enzyme cytochemical investigations. Acta Histochem. Cytochem. 21, 473–80.

    Google Scholar 

  • Rafols, J. A. & Getchell, T. V. (1983) Morphological relations between the receptor neurons, sustentacular cells and Schwann cells in the olfactory mucosa of the salamander. Anat. Rec. 206, 87–101.

    Google Scholar 

  • Ronnett, G. V., Parfitt, D. J., Hester, L. D. & Snyder, S. H. (1991) Odorant-sensitive adenylate cyclase: rapid, potent activation and desensitization in primary olfactory neuronal cultures. Proc. Natl Acad. Sci. USA 88, 2366–9.

    Google Scholar 

  • Shanta, T. R., Woods, W. D., Waitzman, M. B. & Bourne, G. H. (1966) Histochemical method for localization of cyclic 3′,5′-nucleotide phosphodiesterase. Histochemie 7, 177–90.

    Google Scholar 

  • Shirley, S. G., Robinson, C. J., Dickinson, K., Aujla, R. & Dodd, G. H. (1986) Olfactory adenylate cyclase of the rat: stimulation by odorants and inhibition by Ca2+. Biochem. J. 240, 605–7.

    Google Scholar 

  • Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells: differential stimulation by distinct classes of odorants. J. Biol. Chem. 261, 15538–43.

    Google Scholar 

  • Snyder, S. H., Sklar, P. B. & Pevsner, J. (1988) Molecular mechanisms of olfaction. J. Biol. Chem. 263, 13971–4.

    Google Scholar 

  • Steinlen, S., Klumpp, S. & Schultz, J. E. (1990) Guanylate cyclase in olfactory cilia from rat and pig. Biochim. Biophys. Acta 1054, 69–72.

    Google Scholar 

  • Suzuki, N. (1989) Voltage- and cyclic nucleotide-gated currents in isolated olfactory receptor cells. In Chemical Senses (edited by Brand, J. G., Teeter, J. H., Cagan, R. H. & Kare, M. R.) Vol. 1. p. 469–93. New York, Basel: Marcel Dekker.

    Google Scholar 

  • Trotier, D. & Macleod, P. (1987) The amplification process in olfactory receptor cells. Ann. N.Y. Acad. Sci. 510, 677–9.

    Google Scholar 

  • Vodyanoy, V. & Vodyanoy, I. (1987) ATP and GTP are essential for olfactory response. Neurosci. Lett. 73, 253–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanuma, N., Nomura, H. Cytochemical localization of cyclic 3′,5′-nucleotide phosphodiesterase activity in the rat olfactory mucosa. Histochem J 25, 348–356 (1993). https://doi.org/10.1007/BF00159499

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159499

Keywords

Navigation