Skip to main content
Log in

Content, absorption quantities and intracellular storage sites of heavy metals in Diplopoda (Arthropoda)

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

By means of atomic absorption spectrophotometry, concentrations of more than 2500 mg kg−1 Pb, 150 mg kg−1 Zn, and 320 mg kg−1 Cd could be detected in the intestine tissues of diplopods from a lead and silver smelter's spoil bank. While only small portions of the ingested lead and cadmium are absorbed in the midgut of these diplopods, the zinc uptake into the midgut epithelium reaches 33.8–37.5% of the zinc content in the food pulp when the animals were contaminated acutely. However, after long-term contamination with zinc, absorption and excretion of this metal balanced one another. Absorbed lead and cadmium are predominantly stored in the midgut cells of the diplopods; unspecific precipitation of heavy metal showed the spherites of the resorptive epithelial cells to be the main accumulation sites. Zinc is for the most part localized in or near the cuticle; electron energy loss spectroscopy and ESI electron spectroscopic imaging, however, showed this metal to be present also in the spherites of the midgut's resorption cells. These spherites are assigned to belong to the ‘type A granule’ group since (i) they are concentrically structured, (ii) they are shown to contain great amounts of calcium and (iii) copper, a class B metal, could not be detected in these deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson M. 1979 Mn2+ ions pass through Ca2+ channels in myoepithelial cells. J Exp Biol 82, 227–238.

    Google Scholar 

  • Berger B, Dallinger, R. 1989 Accumulation of cadmium and copper by the terrestrial snail Arianta arbustorum L.: kinetics and budget. Oecologia 79, 60–65.

    Google Scholar 

  • Beyer WN, Pattee OH, Sileo L, Hoffman DJ, Mulhern BM. 1985 Metal contamination in wildlife living near two zinc smelters. Environ Pollut 38A, 63–86.

    Google Scholar 

  • Carter A. 1983 Cadmium, copper and zinc in soil animals and their food in a red clover system. Can J Zool 61, 2751–2757.

    Google Scholar 

  • Cheung WWK, Marshall AT. 1973 Studies on water and ion transport in homopteran insects: ultrastructure and cytochemistry of the cicapoid and cercopoid midgut. Tiss Cell 5, 651–669.

    Google Scholar 

  • Crane DF, Cowden RR. 1968 A cytochemical study of oocyte growth in four species of millipedes. Z Zellforsch Mikrosk Anat 90, 414–431.

    Google Scholar 

  • Crichton RR. 1982 Ferritin-the structure and function of an iron storage protein. In: Dunford HB, Dolphin D, Raymond KN, Sieker L, eds. The Biological Chemistry of Iron. New York: Reidel; 45–61.

    Google Scholar 

  • Dallinger R, Prosi F. 1988 Heavy metals in the terrestrial isopod Porcellio scaber LATREILLE. II. Subcellular fraction of metal-accumulating lysosomes from hepatopancreas. Cell Biol Toxicol 4, 97–109.

    Google Scholar 

  • Hames CAC. 1989 The digestive system and metals in terrestrial isopods. PhD Thesis, Reading.

  • Hames CAC, Hopkin SP. 1991 Assimilation and loss of 109Cd and 65Zn by the terrestrial isopods Oniscus asellus and Porecellio scaber. Bull Environ Cont Toxicol 47, 440–447.

    Google Scholar 

  • Harrison PM. 1977 Ferritin: an iron storage molecule. Sem Haematol 14, 55–70.

    Google Scholar 

  • Hopkin SP. 1989 Ecophysiology of Metals in Terrestrial Invertebrates. New York: Elsevier.

    Google Scholar 

  • Hopkin SP. 1990 Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Funct Ecol 4, 321–327.

    Google Scholar 

  • Hopkin SP, Martin MH. 1982 The distribution of zinc, cadmium, lead and copper within the hepatopancreas of a woodlouse. Tiss Cell 14, 703–715.

    Google Scholar 

  • Hopkin SP, Martin MH. 1983 Heavy metals in the centipede Lithobius variegatus (Chilopoda). Environ Pollut B 6, 309–318.

    Google Scholar 

  • Hopkin SP, Watson K, Martin MH, Mould ML. 1985 The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda: Diplopoda). Bijdr Dierk 55, 88–94.

    Google Scholar 

  • Hopkin SP, Hames CAC, Bragg S. 1989a Terrestrial isopods as biological indicators of zinc pollution in the Reading area, south east England. Monit Zool Ital (NS) Monogr. 4, 477–488.

    Google Scholar 

  • Hopkin SP, Hames CAC, Dray A. 1989b X-ray microanalytical mapping of the intracellular distribution of pollutant metals. Microsc. Anal 14, 23–27.

    Google Scholar 

  • Howard B, Mitchell PCH, Ritchie A, Simkiss K, Taylor M. 1981 The composition of intracellular granules from the metal accumulating cells of the snail Helix aspersa. Biochem J 194, 507–511.

    Google Scholar 

  • Hubert M. 1974 Le tissu adipeux de Cylindroiulus teutonicus Pocock (londinensis C.L.K) Diplopoda, Iuloidea; étude histologique et ultrastructurale. CR Acad Sci Paris 278D, 3343–3346.

    Google Scholar 

  • Hubert M. 1975 Sur le nature des accumulations minérales et uriques chez Cylindroiulus teutonicus Pocock (londinensis C.L.K. Diplopoda, Iuloidea). CR Acad Sci Paris 281D, 151–156.

    Google Scholar 

  • Hubert M. 1978a Données histophysiologique complémentaires sur les bioaccumulations minérales et puriques chez Cylindroiulus londinensis (Leach, 1814) (Diplopoda, Iuloidea). Arch Zool Exp Gen 119, 669–683.

    Google Scholar 

  • Hubert M. 1978b Les cellules hépatiques de Cylindroiulus londinensis (Leach 1914) (Diplopoda, Iuloidea). CR Acad Sci Paris 286D, 627–630.

    Google Scholar 

  • Hubert M. 1979 Localization and identification of mineral elements and nitrogenous waste in Diplopoda. In: Camatini M, ed. Myriapod Biology. London: Academic Press; 127–133.

    Google Scholar 

  • Hunter BA, Johnson MS, Thompson DJ. 1987 Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination. J Appl Ecol 24, 573–586.

    Google Scholar 

  • Hunziger PE, Kägi JHR. 1985 Metallothionein. In: Harrison PM. ed. Metalloproteins. Part 2, Metal Proteins with Non-redox Roles. Basingstoke: Macmillan Press: 149–181.

    Google Scholar 

  • Karnowski MJ. 1971 Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. J Cell Biol 52, 284.

    Google Scholar 

  • Kägi JHR. 1987 Metallothioneins II. Basel: Birkhäuser.

    Google Scholar 

  • Köhler H-R, Alberti G. 1992 The effect of heavy metal stress on the intestine of diplopods. Ber nat-med Ver Innsbruck Suppl 10, 257–267.

    Google Scholar 

  • Köhler H-R, Alberti G, Storch V. 1991 The influence of the mandibles of Diplopoda on the food-a dependence of fine structure and assimilation efficiency. Pedobiologia 35, 108–116.

    Google Scholar 

  • Köhler H-R, Storch V, Alberti G. 1992 The impact of lead on the assimilation efficiency of laboratory-held Diplopoda (Arthropoda) preconditioned in different environmental situations. Oecologia 90, 113–119.

    Google Scholar 

  • Körtje K-H, Freihöfer D, Rahmann H. 1990 Cytochemical localization of calcium in the central nervous system of vertebrates. Ultramicroscopy 32, 12–17.

    Google Scholar 

  • Maren TH. 1967 Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47, 595–781.

    Google Scholar 

  • Martoja R, Lhonore D, Ballan-Dufrancais C. 1977 Bioaccumulation minerale et purique chez les insectes planipennes, Euroleon nostras, Myrmeleon hyalinus, Acanthaclisis beaticus, Sisyra fuscata, Chrysopa sp. Arch Zool Exp Gen 118, 441–455.

    Google Scholar 

  • Mason AZ, Simkiss K. 1982 Sites of mineral deposition in metal-accumulating cells. Exp Cell Res 139, 383–391.

    CAS  PubMed  Google Scholar 

  • Morgan AJ, Morris B, James N, Morgan JE, Leyshon K. 1986 Heavy metals in terrestrial macroinvertebrates: species differences within and between trophic levels. Chem Ecol 2, 319–334.

    Google Scholar 

  • Neumann W. 1985 Veränderungen am Mittledarm von Oxidus gracilis (C. L. Koch, 1847) während einer Häutung (Diplopoda). Bijdr Dierk 55, 149–158.

    Google Scholar 

  • Nuñez FS. 1975 The digestive tract and digestive enzymes of the desert millipede Orthoporus ornatus (GIRARD) (Diplopoda: Spirostreptidae). Diss Abstr Int (B) 36, 1033.

    Google Scholar 

  • Ottensberger FP, Andrew JW. 1980 High resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res 72, 336–348.

    Google Scholar 

  • Petit J. 1970 Sur la nature et l'accumulation de substances minérales dans le ovocytes de Polydesmus complanatus (Myriapode: Diplopode). CR Acad Sci Paris 270, 2107–2110.

    Google Scholar 

  • Randow E. 1924 Zur Morphologie und Physiologie des Darmkanals der Juliden. Z Wiss Zool 122, 534–582.

    Google Scholar 

  • Read HJ, Martin MH. 1988 A study of myriapod communities in woodlands contaminated with heavy metals. Proc. 7th Int. Congr. Myriapodology, Vittorio-Veneto, 1987; 289–298.

  • Reynolds ES. 1963 The use of lead citrate at high pH as electron opaque stain in electron microscopy. J Cell Biol 17, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer KA, Kegel BH. 1978 Rasterelektronenmikroskopische Technik. Stuttgart: Thieme.

    Google Scholar 

  • Schlüter U. 1979a Spezialisierte Epithelzellen im Bereich des Proctodaeums von Polydesmus sp. (Myriapoda: Diplopoda). Verh dtsch zool Ges (Stuttgart) 72, 300.

    Google Scholar 

  • Schlüter U. 1979b The ultrastructure of an exocrine gland complex in the hind-gut of Scaphiostreptus sp. (Diplopoda: Spirostreptidae). In: Camatini M, ed. Myriapod Biology. London: Academic Press; 143–155.

    Google Scholar 

  • Schlüter U. 1980a Die Feinstruktur der Pylorusdrüsen von Polydesmus angustus LATZEL und Glomeris marginata VILLERS (Diplopoda). Zoomorphologie 94, 307–319.

    Google Scholar 

  • Schlüter U. 1980b Plasmalemma-mitochondrial complexes involved in water transport in the hindgut of a millipede, Scaphiostreptus sp. Cell Tissue Res 205, 333–336.

    Google Scholar 

  • Schlüter U. 1980c Ultrastruktur der Pyloruszähnchen zweier Tasusendfüβler (Tachypodoiulus niger, Polydesmus angustus). Acta Zool 61, 171–178.

    Google Scholar 

  • Schlüter U, Seifert G. 1985 Functional morphology of the hindgut-malpighian tubule complex in Polyxenus lagurus (Diplopoda; Penicillata). Bijdr Dierk 55, 209–218.

    Google Scholar 

  • Seifert G, Rosenberg J. 1977 Feinstruktur der Leberzellen von Oxidus gracilis (C. L. KOCH, 1847) (Diplopoda, Paradoxosomatidae). Zoomorphologie 88, 149–162.

    Google Scholar 

  • Shukla GS, Shukla SC. 1981 Effect of starvation on free amino acids, pH and glycogen contents of gut in millipede Trigoniulus lumbridnus (Gerstacker). Comp Physiol Ecol 6, 159–162.

    Google Scholar 

  • Siegel SM, Siegel BZ, Puerner N, Speitel T, Thorarinsson F. 1975 Water and soil biotic relations in mercury distribution. Water Air Soil Pollut 4, 9–18.

    Google Scholar 

  • Simkiss K. 1976 Intracellular and extracellular routes in biomineralization. Symp Soc Exp Biol 30, 423–444.

    Google Scholar 

  • Simkiss K. 1983 Lipid solubility of heavy metals in saline solutions. J Mar Biol Ass UK 63, 1–7.

    Google Scholar 

  • Spurr AR. 1969 A low viscosity embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.

    CAS  PubMed  Google Scholar 

  • Taylor MG, Simkiss K. 1984 Inorganic deposits in invertebrate tissues. Environ Chem 3, 102–138.

    Google Scholar 

  • Taylor M, Simkiss K, Greaves GN. 1986 Amorphous structure of intracellular mineral granules. Biochem Soc Trans 14, 549–552.

    Google Scholar 

  • Timm F. 1958 Zur Histochemie der Schwermetalle. Das Silbersulfidverfahren. Dt Z gerichtl Med 46, 706–711.

    Google Scholar 

  • Verhoeff KW. 1932 Bronn's Klassen und Ordnungen des Tier-Reichs, 5, II: Gliederfüssler: Arthropoda, Klasse Diplopoda, 2. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Walker WA. 1976 Host defense mechanisms in the gastrointestinal tract. Pediatrics 57, 901–916.

    Google Scholar 

  • Weissenfels N. 1982 Rasterelektronenmikroskopische Histologie von spongiösem Material. Microscop Acta 85, 345–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, HR., Körtje, KH. & Alberti, G. Content, absorption quantities and intracellular storage sites of heavy metals in Diplopoda (Arthropoda). Biometals 8, 37–46 (1995). https://doi.org/10.1007/BF00156156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00156156

Keywords

Navigation