Skip to main content
Log in

Granulation and supergranulation as convective modes in the solar envelope

  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The stability of linear convective modes in the solar convection zone is investigated by incorporating the mechanical and thermal effects of turbulence through the eddy transport coefficients. The inclusion of turbulent thermal conductivity and viscosity, calculated in the framework of the mixing length approximation, is demonstrated to have a profound influence on the convective growth rates. The solar envelope model of Spruit (1977) is used to show that that most rapidly growing fundamental mode and the first harmonic are in reasonable accord with the observed features of granulation and supergranulation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, H. and Osaki, Y.: 1975, Publ. Astron. Soc. Japan 27, 581.

    Google Scholar 

  • Antia, H. M.: 1979, J. Computational Phys. 30, 283.

    Google Scholar 

  • Bahng, J. D. and Schwarzschild, M.: 1961, Astrophys. J. 134, 312.

    Google Scholar 

  • Beckers, J. M. and Canfield, R. C.: in R. Cayrel and M. Steinberg (eds.), Physique des Mouvements dans les Atmospheres Stellaires, Colloques Internationaux du C.N.R.S. No. 250.

  • Böhm, K. H.: 1963, Astrophys. J. 137, 881.

    Google Scholar 

  • Böhm, K. H.: 1967, in R. N. Thomas (ed.), ‘Aerodynamic Phenomena in Stellar Atmospheres’, IAU Symp. 28, 366.

  • Böhm, K. H.: 1976, in R. Cayrel and M. Steinberg (eds.), Physique des Mouvements dans les Atmospheres Stellaires, Colloques Internationaux du C.N.R.S. No. 250.

  • Böhm-Vitense, K. E.: 1958, Z. Astrophys. 46, 108.

    Google Scholar 

  • Bumba, V.: 1970, Solar Phys. 14, 80.

    Google Scholar 

  • Chitre, S. M. and Gokhale, M. H.: 1973, Solar Phys. 30, 319.

    Google Scholar 

  • Cox, J. P. and Guili, R. T.: 1968, Principles of Stellar Structure, Gordon and Breach, Science Publishers.

  • Cox, J. P. and Stewart, J. H.: 1970, Astrophys. J. Suppl. 19, 243.

    Google Scholar 

  • Hart, M. H.: 1973, Astrophys. J. 184, 587.

    Google Scholar 

  • Howard, R.: 1971, Solar Phys. 16, 21.

    Google Scholar 

  • Namba, O. and Diemel, W. E.: 1969, Solar Phys. 7, 167.

    Google Scholar 

  • Nelson, G. D. and Musman, S.: 1978, Astrophys. J. D22, L69.

    Google Scholar 

  • Pandey, S. K., Antia, H. M., and Chitre, S. M.: 1979, Astrophys. Space Sci. 63, 103.

    Google Scholar 

  • Simon, G. W. and Leighton, R. B.: 1964, Astrophys. J. 40, 1120.

    Google Scholar 

  • Simon, G. W. and Weiss, N. O.: 1968, Z. Astrophys. 69, 435.

    Google Scholar 

  • Spiegel, E. A.: 1967, in R. N. Thomas (ed.), ‘Aerodynamic Phenomena in Stellar Atmospheres’, IAU Symp. 28, 348.

  • Spruit, H. C.: 1977, Ph.D. Thesis, Utrecht.

  • Unno, W.: 1961, Publ. Astron. Soc. Japan 13, 276.

    Google Scholar 

  • Unno, W.: 1967, Publ. Astron. Soc. Japan 19, 140.

    Google Scholar 

  • Unno, W. and Spiegel, E. A.: 1966, Publ. Astron. Soc. Japan 18, 285.

    Google Scholar 

  • Vandakurov, Yu. V.: 1975, Solar Phys. 40, 3.

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1976, Astrophys. J. Suppl. 30, 1.

    Google Scholar 

  • Vickers, G. T.: 1971, Astrophys. J. 163, 363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from Govt. Digvijai College, Rajnandgaon 491441, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antia, H.M., Chitre, S.M. & Pandey, S.K. Granulation and supergranulation as convective modes in the solar envelope. Sol Phys 70, 67–91 (1981). https://doi.org/10.1007/BF00154392

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154392

Keywords

Navigation