Skip to main content
Log in

Selective intra-lysosomal concentration of niobium in kidney and bone marrow cells: a microanalytical study

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Niobium is used as an alloy in the industrial and biomedical fields. The concentration of the toxic element in organs of a number of animal species has been defined by using radioactive niobium (95Nb). However, tissue lesions induced by niobium have only been studied at the light microscopy level. In this study, we used an electron probe X-ray analyzer equipped with a transmission electron microscope to define the localization of this element in kidney and bone marrow cells. Results demonstrated that niobium is located in the lysosome and that this element coprecipitates with phosphate. In kidney, lysosomes and precipitates are eliminated in the tubular lumen. In contrast, precipitates appear to be eliminated more slowly from the lysosomes of bone marrow macrophages. These processes therefore correspond to one of the mechanisms by which lysosomes eliminate certain toxic mineral elements and thus play a role in the more general process of the body's defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry JP, Hourdry J, Galle P, et al. 1978 Chromium concentration by proximal renal tubular cells. An ultrastructural microanalytical and cytochemical study. J Histochem Cytochem 26, 651–657.

    Google Scholar 

  • Berry JP, Hourdry J, Sternberg M, et al. 1982a Aluminum phosphate vizualisation of acid phosphatase activity. A biochemical and X-ray microanalysis study. J Histochem Cytochem 30, 86–90.

    Google Scholar 

  • Berry JP, Brille P, Leroy AF, et al. 1982b Experimental ultrastructural and X-ray microanalysis study of cisplatin in the rat. Intracellular localization of platinum. Cancer Treat Rep 66, 1529–1533.

    Google Scholar 

  • Berry JP, Poupon MF, Galle S, et al. 1984 Role of lysosomes in gallium concentration by mammalian tissue. Biol Cell 51, 43–52.

    Google Scholar 

  • Berry JP, Poupon MF, Judde JC, et al. 1985 In vitro electron microprobe of carcinogenic nickel compound interaction with tumor cells. Ann Clin Lab Sci 15, 109–120.

    Google Scholar 

  • Berry JP, Masse R, Escaig F, et al. 1988 A microanalytical localization of cerium. A microanalytical study using electron microprobe and ionic microanalysis. Human Toxicol 8, 511–520.

    Google Scholar 

  • Berry JP. 1987 Tetramine dichloro-palladium subcellular localisation in the kidney. Electronmicroprobe study. J Submicrosc Cytol 19, 53–56.

    Google Scholar 

  • Berry JP. 1988 Cis-DDP in combination with selenium and sulfur. Subcellular effect in kidney cells. Electron microprobe study. J Submicrosc Pathol 20, 59–65.

    Google Scholar 

  • Berry JP. Conjugated effect of arsenic salt and selenium salt. Electron microprobe study. Personal communication.

  • Borel JP, Randoux A, Le Pench C, et al. 1987 Les hydrolases. In Biochimie Dynamique. Paris: Maloine; 1820.

    Google Scholar 

  • Cuddihy RC. 1978 Deposition and retention of inhaled niobium in beagle dogs. Health Phys 34, 167–176.

    Google Scholar 

  • Downs LW, Scott JK, Yuile CL, et al. 1965 The toxicity of niobium salts. Am Ind Hyg Ass 26, 337–346.

    Google Scholar 

  • Ericsson JLE, Trump BF. 1965 Observations on the application to electron microscopy of the lead phosphate technique for the demonstration of acid phosphatase. Histochemistry 4, 470–487.

    Google Scholar 

  • Furchner JE, Drake GA. 1971 Comparative metabolism of radionucleides in mammals—VI. Retention of 95Nb in the mouse, rat, monkey and dog. Health Phys 21, 173–180.

    Google Scholar 

  • Galle P. 1974 Rôle des lysosomes et des mitochondries dans les phénomènes de concentration et d'élimination d'éléments minéraux (uraniun et or) par le rein. J Microsc 19, 16–24.

    Google Scholar 

  • Galle P, Berry JP. 1980 The role of acid phosphatase in the concentration of some mineral elements in lysosomes. In Brederoo P, Cosslet VE, eds. Electron Microscopy, Vol. 3. Leiden: Seventh European Congress Electron Microscopy Foundation; 92.

    Google Scholar 

  • Galle P. 1981 Physiologie animale. Mécanisme d'élimination rénale de deux éléments du groupe IIIA de la classification périodique. l'aluminium et l'indium. C R Acad Sci Paris 292, 91–96.

    Google Scholar 

  • Goering PL, Fowler BA. 1991 Niobium. In Merian E, ed. Metals and their Compounds in the Environment. Berlin: VCH publisher; 1127.

    Google Scholar 

  • Gomori G. 1952 Microscopic Histochemistry Principles and Practise. Chicago: University of Chicago Press.

    Google Scholar 

  • Haguenoer JM, Furon D. 1981 In Toxicology et Hygiéne Industrielles, Vol. 2. Paris: Technique et Documentation Publisher: 155.

    Google Scholar 

  • Haley TJ, Komesu N, Raymond K. 1962 Pharmacology and toxicology of niobium chloride. Toxicol Appl Pharmacol 4, 385–392.

    Google Scholar 

  • Hallegot Ph, Galle P. 1988 Microanalytical study of thorium 232 deposits in bone marrow and liver. Radiat Environ Biophys 7, 67–78.

    Google Scholar 

  • Hayat MA. 1974 Electron Microscopy of Enzymes. Principles and methods. Vol 2. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Luckey TD, Venugopal B. 1977 Metal Toxicity in Mammals. 2 Vols. New York: Plenum Press.

    Google Scholar 

  • Lumbroso H. 1977 Selenium. In Complements au Nouveau Traité de Chimie Minérale. Paris: Masson.

    Google Scholar 

  • Robinson JM, Karnovsky MS. 1983 Ultrastructural localization of several phosphatases with cerium. J Histochem Cytochem 31, 1197–1208.

    Google Scholar 

  • Rodrigues LE, Galle P. 1985 Lysosomotropisme et action anti-inflammatoire des sels d'or. Rev Rhum 52, 479–483.

    Google Scholar 

  • Schneidereit M, Senekowitsch R, Kriegel H. 1985 Transfer and distribution of niobium 95 in adult, fetal, and newborn rats injection during pregnancy. Radiat Environ Biophys 5, 125–130.

    Google Scholar 

  • Semlistch M, Staub F, Weber H. 1985 Titanium-alumnium-niobium alloy development for biocompatible high strength surgical implants. Biomed Tech 30, 334–339.

    Google Scholar 

  • Waters SE, Butcher RG. 1980 Studies on the Gomori acid phosphatase reaction, the preparation of the incubation medium. Histochem J 12, 191–200.

    Google Scholar 

  • Watrin A, Galle P. 1986 Sites d'accumulation de l'aluminium dans la moelle osseuse, étude par microscopie ionique et microanalyse X. Biol Cell 57, 63–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, J.P., Bertrand, F. & Galle, P. Selective intra-lysosomal concentration of niobium in kidney and bone marrow cells: a microanalytical study. Biometals 6, 17–23 (1993). https://doi.org/10.1007/BF00154228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154228

Keywords

Navigation