Skip to main content
Log in

Space-based measurements of elemental abundances and their relation to solar abundances

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar wind provides a source of solar abundance data that only recently is being fully exploited. The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results have allowed us to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass (CHEM) instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle (SEP) experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, L. H.: 1986, in A. Dalgarno and D. Layzer (eds.), Spectroscopy of Astrophysical Plasmas, Cambridge University Press, Cambridge, p. 89.

    Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, Geochim. Cosmochem. Acta 53, 197.

    Google Scholar 

  • Bahcall, J. N. and Ulrich, R. K.: 1988, Rev. Mod. Phys. 60, 297.

    Google Scholar 

  • Bame, S. J., Asbridge, J. R., Felthauser, H. E., Glore, J. P., Hawk, H. L., and Chavez, J.: 1978, IEEE Trans. Geosci. Electronics GE-16, 160.

    Google Scholar 

  • Bochsler, P.: 1989, J. Geophys. Res. 94, 2365.

    Google Scholar 

  • Bochsler, P., Geiss, J., and Joss, R.: 1985, J. Geophys. Res. 90, 779.

    Google Scholar 

  • Bochsler, P., Geiss, J., and Kunz, S.: 1986, Solar Phys. 103, 177.

    Google Scholar 

  • Breneman, H. H. and Stone, E. C.: 1985, Astrophys. J. 299, L57.

    Google Scholar 

  • Cameron, A. G. W.: 1982, in C. A. Barnes, D. D. Clayton, and D. N. Schramm (eds.), Essays in Nuclear Astrophysics, Cambridge University Press, Cambridge, pp. 23–43.

    Google Scholar 

  • Coplan, M. A., Ogilvie, K. W., Bochsler, P., and Geiss, J.: 1978, IEEE Trans. Geosci. Electronics GE-16, 185.

    Google Scholar 

  • Coplan, M. A., Ogilvie, K. W., Bochsler, P., and Geiss, J.: 1984, Solar Phys. 93, 415.

    Google Scholar 

  • D'Annunzio, C. M., Ogilvie, K. W., and Coplan, M. A.: 1986, EOS 67, 1142.

    Google Scholar 

  • Geiss, J. and Bochsler, P.: 1985, in Rapports Isotopiques dans le Système Solaire, Éditions Cepaudes, Paris, pp. 213–228.

    Google Scholar 

  • Geiss, J., Hirt, P., and Leutwyler, H.: 1970, Solar Phys. 12, 458.

    Google Scholar 

  • Geiss, J., Buhler, F., Cerutti, H., Eberhardt, P., and Filleux, C.: 1972, Apollo 16 Prelim. Sci. Report, NASA SP-315, p. 14–1.

  • Gloeckler, G. and Geiss, J.: 1989, AIP Proc. Cosmic Abundances Matter Symp. 183, 49.

    Google Scholar 

  • Gloeckler, G., Ipavich, F. M., Studemann, W., Wilken, B., Hamilton, D. C., Kremiges, G., Hovestadt, D., Gliem, F., Lundgren, R. A., Rieck, W., Turns, E. O., Cain, J. C., MaSung, L. S., Weiss, W., and Winterhof, P.: 1985, IEEE Trans. Geosci. Remote Sensing GE-23, 234.

    Google Scholar 

  • Grevesse, N.: 1984, Phys. Scripta T8, 49.

    Google Scholar 

  • Hovestadt, D.: 1974, in C. T. Russell (ed.), Solar Wind III, Institute of Geophys. and Planetary Phys., University of California, Los Angeles, pp. 2–5.

    Google Scholar 

  • Meyer, J. P.: 1979, in Les Eléments et Leurs Isotopes dans l'Universe, Institute d'Astrohysique, Liège, pp. 153–188.

    Google Scholar 

  • Meyer, J. P.: 1985, Astrophys. J. Suppl. Ser. 57, 151.

    Google Scholar 

  • Ogilvie, K. W., Coplan, M. A., Bochsler, P., and Geiss, J.: 1989, Solar Phys. 124, 167.

    Google Scholar 

  • Ramaty, R. and Murphy, R. J.: 1987, Space Sci. Rev. 45, 213.

    Google Scholar 

  • Ross, J. E. and Aller, L. H.: 1976, Science 191, 1223.

    Google Scholar 

  • Schmid, J., Bochsler, P., and Geiss, J.: 1988, Astrophys. J. 329, 956.

    Google Scholar 

  • Stone, E. C.: 1989, AIP Proc. Cosmic Abundances Matter Symp. 183, 72.

    Google Scholar 

  • von Steiger, R. and Geiss, J.: 1989, Astron. Astrophys. 225, 222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coplan, M.A., Ogilvie, K.W., Bochsler, P. et al. Space-based measurements of elemental abundances and their relation to solar abundances. Sol Phys 128, 195–201 (1990). https://doi.org/10.1007/BF00154156

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154156

Keywords

Navigation