Skip to main content
Log in

Structure of the chromosphere-corona transition region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The structure and energy balance of the chromosphere-corona transition region is investigated by means of a static, planar model which is compared with the results of XUV-resonance-line observations. In this model, the transition region is heated by thermal conduction from the corona and cooled by radiative losses. Comparison of the model with observational results implies that this is the dominant process in the energy balance of the transition region, and that the base of the transition region is inherently non-static and/or non-planar. The model explains the observational finding of Noyes et al. (1970) that the number density and the downward heat flux both increase by the same factor from quiet regions to active regions. The implications of these results are discussed with regard to spicules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. W.: 1963, Astrophysical Quantities, Athlone Press, p. 185.

  • Allen, C. W.: 1965, Space Sci. Rev. 4, 91.

    Google Scholar 

  • Athay, R. G.: 1966, Astrophys. J. 145, 784.

    Google Scholar 

  • Athay, R. G.: 1969, Solar Phys. 9, 51.

    Google Scholar 

  • Beekers, J. M.: 1968, Solar Phys. 3, 367.

    Google Scholar 

  • Cox, D. P. and Tucker, W. H.: 1969, Astrophys. J. 157, 1157.

    Google Scholar 

  • Delcroix, A. and Lemaire, A.: 1969, Astrophys. J. 156, 787.

    Google Scholar 

  • Devoto, R. S.: 1968, J. Plasma Phys. 2, 617.

    Google Scholar 

  • Dupree, A. K. and Goldberg, L.: 1967, Solar Phys. 1, 229.

    Google Scholar 

  • Goldberg, L., Müller, E., and Aller, L.: 1960, Astrophys. J. Suppl. 5, 1.

    Google Scholar 

  • Kopp R. A.: 1968, Air Force Cambridge Research Laboratories Scientific Report No. 4, AFRCL-68-0312.

  • Kopp, R. A. and Kuperus, M.: 1968, Solar Phys. 4, 212.

    Google Scholar 

  • Kuperus, M. and Athay, R. G.: 1967, Solar Phys. 1, 361.

    Google Scholar 

  • Leighton, R. B.: 1963, Ann. Rev. Astron. Astrophys. 1, 19.

    Google Scholar 

  • Nikolsky, G. M.: 1969, Solar Phys. 6, 399.

    Google Scholar 

  • Noyes, R. W., Withbroe, G. L., and Kirshner, R. P.: 1970, Solar Phys. 11, 388.

    Google Scholar 

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Pottasch, S. R.: 1964, Space Sci. Rev. 3, 816.

    Google Scholar 

  • Suemoto, Z. and Hiei, E.: 1962, Publ. Astron. Soc. Japan 14, 33.

    Google Scholar 

  • Uchida, Y.: 1967, Astrophys. J. 147, 181.

    Google Scholar 

  • Vincenti, W. G. and Kruger, C. H.: 1965, Introduction to Physical Gas Dynamics, John Wiley and Sons, Inc., p. 18.

  • Withbroe, G. L.: 1970, Solar Phys. 11, 42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, R.L., Fung, P.C.W. Structure of the chromosphere-corona transition region. Sol Phys 23, 78–102 (1972). https://doi.org/10.1007/BF00153893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153893

Keywords

Navigation