Skip to main content
Log in

Variability in clinically measured photopic oscillatory potentials

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Oscillatory potentials found on the ascending phase of the electroretinogram b-wave probably originate in some element(s) of the inner plexiform layer. As oscillatory potentials are particularly sensitive to changes in retinal, and possibly choroidal, blood flow, they have been used extensively to provide clinical measures of the degree of retinal ischemia during the progression of diabetic retinopathy. Recent studies in our laboratories have disclosed previously unreported significant variability in the photopic oscillatory potentials on repeated measures even in tightly controlled conditions. The amplitude of five recordable light-adapted wavelets exhibited considerable intra- and inter-subject variability. Until further investigation can determine factors affecting standardization of testing, it appears that changes in oscillatory potential implicit times rather than in amplitudes are a better measurement in clinical neurophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cobb WA, Morton HB. A new component of the human electroretinogram. J Physiol (London) 1954; 123: 36–7.

    Google Scholar 

  2. Ogden TE. The oscillatory waves of the primate electroretinogram. Vision Res 1973; 13: 1059–74.

    Google Scholar 

  3. Heynen H, Wachtmeister L, Van Norren D. Origin of the oscillatory potentials in the primate retina. Vision Res 1985; 25: 1365–73.

    Google Scholar 

  4. Wachtmeister L. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG). I. GABA- and glycine antagonists. Acta Ophthalmol 1980; 58: 712–25.

    Google Scholar 

  5. Wachtmeister L. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG). II. Glutamate aspartate and dopamine antagonists. Acta Ophthalmol 1981; 59: 247–58.

    Google Scholar 

  6. Wachtmeister L. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG). III. Some amino acids and ethanol. Acta Ophthalmol 1981; 59: 609–19.

    Google Scholar 

  7. Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. Acta Ophthalmol 1972; 116 (Suppl): 5–32.

    Google Scholar 

  8. Algvere P, Westbeck S. Human ERG in response to double flashes of light during the course of dark adaptation: A Fourier analysis of the oscillatory potentials. Vision Res 1972; 12: 195–214.

    Google Scholar 

  9. Algvere P, Wachtmeister L, Westbeck S. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis. Acta Ophthalmol 1972; 50: 737–59.

    Google Scholar 

  10. Gjotterberg M. Double flash human electroretinogram with special reference to the oscillatory potentials and the early phase of dark adaptation: A normative study. Acta Ophthalmol 1974; 52: 291–303.

    Google Scholar 

  11. Gur M, Zeevi Y. Frequency-domain analysis of the human electroretinogram. J Opt Soc Am 1980; 70(1): 53–9.

    Google Scholar 

  12. Speros P, Price J. Oscillatory potentials: History, techniques and potential use in the evaluation of disturbances of retinal circulation. Surv Ophthalmol 1981; 25(4): 237–52.

    Google Scholar 

  13. Algvere P. Clinical studies on the oscillatory potentials of the human electroretinogram with special reference to the scotopic b-wave. Acta Ophthalmol 1968; 46: 993–1024.

    Google Scholar 

  14. Yonemura D, Kawasaki K. New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 1979; 48: 163–222.

    Google Scholar 

  15. Bresnick GH, Korth K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch Ophthalmol 1984; 102: 1307–11.

    Google Scholar 

  16. Arden GB, Hamilton AMP, Wilson-Holt J, Ryan S, Yudkin JS, Kurtz A. Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: Possible use as a screening test. Br J Ophthalmol 1986; 70: 330–5.

    Google Scholar 

  17. Coupland SG. Oscillatory potential changes related to stimulus intensity and light adaptation. Doc Ophthalmol 1987; 66: 195–205.

    Google Scholar 

  18. Lovasik JV, Spafford MM. An electrophysiological investigation of visual function in juvenile insulin-dependent diabetes mellitus. Am J Optom Physiol Opt 1988; 65: 236–53.

    Google Scholar 

  19. Brunette JR, Desrochers R. Oscillatory potentials: A clinical study in diabetics. Can J Ophthalmol 1970; 5: 373–80.

    Google Scholar 

  20. Gunkel RD, Bergsma DR, Gouras P. A ganzfeld stimulator for electroretinography. Arch Ophthalmol 1976; 94: 669–70.

    Google Scholar 

  21. Lovasik JV. Pharmacokinetics of topically applied cyclopentolate HCl and tropicamide. Am J Optom Physiol Opt 1986; 63: 787–803.

    Google Scholar 

  22. Jaanus SD, Pagano VT, Bartlett JD. Drugs affecting the autonomic nervous system. In: Clinical Ocular Pharmacology. Bartlett JD, Jaanus SD, eds. Boston: Butterworths, 1984: 37–130.

    Google Scholar 

  23. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 1979; 18: 988–991.

    Google Scholar 

  24. Wachtmeister L, Dowling JE. The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 1978; 17: 1176–88.

    Google Scholar 

  25. Eichler J, Stave J, Bohm J. Oscillatory potentials in hypertensive retinopathy. Doc Ophthalmol Proc Series 1984; 40: 161–5.

    Google Scholar 

  26. Moschos M, Panagakis E, Angelopoulos A. Changes of oscillatory potentials of the ERG in diabetic retinopathy. Ophthalmic Physiol Opt 1987; 7: 477–9.

    Google Scholar 

  27. Coupland SG. A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol 1987; 66: 207–18.

    Google Scholar 

  28. Gur M, Zeevi YY, Bielik M, Neumann E. Changes in the oscillatory potentials of the electroretinogram in glaucoma. Curr Eye Res 1987; 6: 457–66.

    Google Scholar 

  29. MacKay GJ, Gouras P. Light-adaptation augments the amplitude of the human cone ERG. Invest Ophthalmol Vis Sci 1985; 26 (Suppl): 323.

    Google Scholar 

  30. Kojima M, Zrenner E. Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Graefes Klin Exp Ophthalmol 1978; 206: 107–20.

    Google Scholar 

  31. Gutierrez O, Spiguel RD. Electroretinographic study of the effect of reserpine on the cat retina. Vision Res 1971; 3(Suppl): 161–81.

    Google Scholar 

  32. Kamp CW. The dopamine system of the retina. In: Retinal transmitters and modulators: Models for the brain. Vol. 2. Morgan WW, ed. Boca Raton: CRC Press Inc., 1985: 1–31.

    Google Scholar 

  33. Kramer SG. Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest Ophthalmol 1971; 10: 438–52.

    Google Scholar 

  34. Kramer SG, Potts AM, Mangnall Y. Dopamine: A retinal neurotransmitter. II. Autoradiographic localization of H3-dopamine in the retina. Invest Ophthalmol 1971; 10: 617–24.

    Google Scholar 

  35. Starr MS. The effects of various amino acids, dopamine and some convulsants on the electroretinogram of the rabbit. Exp Eye Res 1975; 21: 79–87.

    Google Scholar 

  36. Dzikowski J. Dopamine effect on ERG curve under experimental conditions. Klinika Oczna 1980; 82: 61–4.

    Google Scholar 

  37. Filipova M, Balik J, Filip V, Rodny J, Krejcova H. Electroretinographic changes in patients with parkinsonism treated with various classes of antiparkinsonian drugs. Activ Nerv Sup (Praha) 1979; 21: 136–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kothe, A.C., Lovasik, J.V. & Coupland, S.G. Variability in clinically measured photopic oscillatory potentials. Doc Ophthalmol 71, 381–395 (1989). https://doi.org/10.1007/BF00152765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00152765

Key words

Navigation