Skip to main content
Log in

Excess heating of corona and chromosphere above magnetic regions by non-linear Alfvén waves

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Excess heating of the active region solar atmosphere is interpreted by the decay of MHD slow-mode waves produced in the corona through the non-linear coupling of Alfvén waves supplied from subphotospheric layers. It is stressed that the Alfvén-mode waves may be very efficiently generated directly in the convection layer under the photosphere in magnetic regions, and that such magnetic regions, at the same time, provide the ‘transparent windows’ for Alfvén waves in regard to the Joule and frictional dissipations in the photospheric and subphotospheric layers. Though the Alfvén waves suffer considerable reflection in the chromosphere and in the transition layer, a certain fraction of this large flux is propagated out to the corona, and a large velocity amplitude exceeding the local Alfvén velocity is attained during the propagation along the magnetic tubes of force into a region of lower density and weaker magnetic field. The otherwise divergence-free velocity field in Alfvén waves gets involved in such a case with a compressional component (slow-mode waves) which again is of considerable velocity amplitude relative to the local acoustic velocity when estimated by using the formulation for non-linear coupling between MHD wave modes derived by Kaburaki and Uchida (1971). Therefore, the compressional waves thus produced through the non-linear coupling of Alvén waves will eventually be thermalized to provide a heat source. The introduction of this non-linear coupling process and the subsequent thermalization of thus produced slow-mode waves may provide means of converting the otherwise dissipation-free Alfvén mode energy into heat in the corona. The liberated heat will readily be redistributed by conduction along the magnetic lines of force, with higher density as a consequence of increased scale height, and thus the loop-like structure of the coronal condensations (or probably also the thread-like feature of the general corona) may be explained in a natural fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H.: 1947, Monthly Notices Roy. Astron. Soc. 107, 211.

    Google Scholar 

  • Alfvén, H. and Falthammer, C.-G.: 1963, Cosmical Electrodynamics, Oxford University Press, London, p. 85.

    Google Scholar 

  • Altschuler, M. D., Trotter, D. E., and Orrall, F. Q.: 1972, Solar Phys. 26, 354.

    Google Scholar 

  • Athay, R. G.: 1966, Astrophys, J. 146, 223.

    Google Scholar 

  • Bahng, J. and Schwarzschild, M.: 1963, Astrophys. J. 137, 901.

    Google Scholar 

  • Beckers, J. M. and Schultz, R. B.: 1972, Solar Phys. 27, 61.

    Google Scholar 

  • Biermann, L.: 1948, Z. Astrophys. 25, 161.

    Google Scholar 

  • Billings, D. E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Danielson, R. E.: 1964, Astrophys. J. 139, 45.

    Google Scholar 

  • de Jager, C. and Kuperus, M.: 1961, Bull. Astron. Soc. Neth. 16, 71.

    Google Scholar 

  • Dunn, R. B.: 1972, private communication.

  • Ferraro, V. C. A. and Plumpton, C.: 1958, Astrophys. J., 127, 459.

    Google Scholar 

  • Giovanelli, R. G.: 1972, Solar Phys. 27, 71.

    Google Scholar 

  • Howard, R. F.: 1959, Astrophys. J. 130, 193.

    Google Scholar 

  • Jordan, S.: 1970, Astrophys. J. 161, 1189.

    Google Scholar 

  • Kaburaki, O. and Uchida, Y.: 1971, Publ. Astron. Soc. Japan 23, 405.

    Google Scholar 

  • Kakinuma, T. and Swarup, G.: 1962, Astrophys. J. 136, 975.

    Google Scholar 

  • Kato, S.: 1968, Publ. Astron. Soc. Japan 20, 59.

    Google Scholar 

  • Kopp, R.: 1968, Thesis, Harvard University, Cambridge, Mass.

    Google Scholar 

  • Kulsrud, R. M.: 1955, Astrophys. J. 121, 461.

    Google Scholar 

  • Kuperus, M.: 1965, Thesis, University of Utrecht, Utrecht, Holland.

    Google Scholar 

  • Lighthill, M. J.: 1952, Proc. Roy. Soc. A221, 564.

    Google Scholar 

  • McKenzie, J. F.: 1971, Astron. Astrophys. 15, 450.

    Google Scholar 

  • Morse, P. M.: 1948, Vibration and Sound, McGraw-Hill, New York, p. 110.

    Google Scholar 

  • Musman, S.: 1967, Astrophys. J. 149, 201

    Google Scholar 

  • Newkirk, G.: 1967, Ann. Rev. Astron. Astrophys. 5, 213.

    Google Scholar 

  • Noyes, R. B.: 1967, in R. N. Thomas (ed.), ‘Aerodynamical Phenomena in Stellar Atmospheres’, IAU Symp. 28.

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Piddington, J. H.: 1956, Monthly Notices Roy. Astron. Soc. 116, 314.

    Google Scholar 

  • Saito, K. and Billings, D. E.: 1964, Astrophys. J. 140, 760.

    Google Scholar 

  • Savage, B. D.: 1969, Astrophys. J. 156, 707.

    Google Scholar 

  • Schatzman, E.: 1949, Ann. Astrophys. 12, 203.

    Google Scholar 

  • Schwarzschild, M.: 1948, Astrophys. J. 107, 1.

    Google Scholar 

  • Sheeley, N. R. Jr. and Engvold, O.: 1970, Solar Phys. 12, 69.

    Google Scholar 

  • Stein, R. F.: 1971, Astrophys. J. Suppl. 22, 410.

    Google Scholar 

  • Takakura, T.: 1964, Publ. Astron. Soc. Japan 16, 230.

    Google Scholar 

  • Takakura, T.: 1967, Solar Phys. 1, 304.

    Google Scholar 

  • Thomas, J. H., Clark, P. A., and Clark Jr., A.: 1971, Solar Phys. 16, 51.

    Google Scholar 

  • Tsubaki, T.: 1967, Publ. Astron. Soc. Japan 19, 96.

    Google Scholar 

  • Uchida, Y. 1963, Publ. Astron. Soc. Japan 15, 376.

    Google Scholar 

  • Uchida, Y. 1965, Astrophys. J. 142, 335.

    Google Scholar 

  • Uchida, Y. 1967, Astrophys. J. 147, 181.

    Google Scholar 

  • Uchida, Y. 1969, Publ. Astron. Soc. Japan 21, 128.

    Google Scholar 

  • Uchida, Y.: 1974a, in R. G. Athay (ed.), ‘Chromospheric Fine Structures’, IAU Symp. 56, to be published.

  • Uchida, Y., 1974b, ‘Comment Made to Giovanelli's Paper’ in R. G. Athay (ed.), ‘Chromospheric Fine Structures’, IAU Symp. 56, to be published.

  • Ulmschneider, P.: 1967, Z. Astrophys. 67, 193.

    Google Scholar 

  • van de Hulst, H. C.: 1951, Problems of Cosmical Aerodynamics, Central Air Document Office, Dayton.

    Google Scholar 

  • Veeder, G. J. and Zirin, H.: 1970, Solar Phys. 12, 391.

    Google Scholar 

  • Wilson, P. R.: 1971, Solar Phys. 22, 434.

    Google Scholar 

  • Withbroe, G.: 1973, Proc. Third Orbiting Solar Observatory Workshop, held in Stanford, 1972.

  • Yun, H. S.: 1970, Astrophys. J. 162, 975.

    Google Scholar 

  • Zirin, H.: 1966, The Solar Atmosphere, Blaisdell, Waltham, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Tokyo Astronomical Observatory, University of Tokyo, Mitaka, Tokyo.

High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, Y., Kaburaki, O. Excess heating of corona and chromosphere above magnetic regions by non-linear Alfvén waves. Sol Phys 35, 451–466 (1974). https://doi.org/10.1007/BF00151968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00151968

Keywords

Navigation