Skip to main content
Log in

Mathematical modelling of the sunspot cycle

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The sunspot record for the time interval 1749–1977 can be represented conveniently by an harmonic model comprising a relatively large number of lines. Solar activity can otherwise be considered as a sequence of partly overlapping events, triggered periodically at intervals of the order of 11 years. Each individual cycle is approximated by a function of the Maxwell distribution type; the resulting impulse model consists of the superposition of the independent pulses. Application of these two models for the prediction of annual values of the Wolf sunspot numbers leads to controversial results. Mathematical modelling of the sunspot time series does not give an unambiguous result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, Y.: 1974, Nonlinear Parameter Estimation, Academic Press, N.Y.

    Google Scholar 

  • Blackman, R. B. and Tukey, J. W.: 1959, The Measurement of Power Spectra, Dover, N.Y.

    Google Scholar 

  • Brown, G. M.: 1974, Nature 251, 592.

    Google Scholar 

  • Chen, W. Y. and Stegen, G. R.: 1974, J. Geophys. Res. 79, 20, 3019.

    Google Scholar 

  • Cohen, T. J. and Lintz, P. R.: 1974, Nature 250, 398.

    Google Scholar 

  • Cole, T. W.: 1973, Solar Phys. 30, 103.

    Google Scholar 

  • Currie, R. G.: 1973, Astrophys. Space Sci. 20, 509.

    Google Scholar 

  • Dodson, H. W. and Hedeman, E. R.: 1972, in E. R. Dyer (ed.), Solar-Terrestrial Physics, Part I, D. Reidel Publ. Co., Dordrecht, Holland, p. 151.

    Google Scholar 

  • Gleissberg, W.: 1952, Die Häufigkeit der Sonnenflecken, Akademie-Verlag, Berlin.

    Google Scholar 

  • Harwood, J. M. and Malin, S. R. C.: 1977, Geophys. J. Roy. Astron. Soc. 50, 605.

    Google Scholar 

  • Hill, J. R.: 1977, Nature 266, 151.

    Google Scholar 

  • Kane, R. P.: 1978, Nature 274, 139.

    Google Scholar 

  • McNish, A. G. and Lincoln, J. V.: 1949, Trans. Am. Geophys. Union 30, 673.

    Google Scholar 

  • Mörth, H. T. and Schlamminger, L.: 1979, in B. M. McCorman and T. A. Seliga (eds.), Solar-Terrestrial Influences on Weather and Climates, D. Reidel Publ. Co., Dordrecht, Holland, p. 193.

    Google Scholar 

  • Ramaswany, G.: 1977, Nature 265, 713.

    Google Scholar 

  • Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978, Geophys. Res. Letters 5, 411.

    Google Scholar 

  • Smythe, C. M. and Eddy, J. A.: 1977, Nature 266, 1977.

    Google Scholar 

  • Sneyers, R.: 1976, J. Appl. Met. 15, 387.

    Google Scholar 

  • Ulrych, T. J. and Clayton, R. W.: 1976, Phys. Earth. Planet. Interiors 12, 188.

    Google Scholar 

  • Wolff, C. L.: 1976, Astrophys. J. 205, 612.

    Google Scholar 

  • Zhukov, L. V. and Muzalevskii, Yu. S.: 1969, Astron. Zh. 46, 600 (English transl. in Soviet Astron.-AJ 13, 473).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Meyer, F. Mathematical modelling of the sunspot cycle. Sol Phys 70, 259–272 (1981). https://doi.org/10.1007/BF00151333

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00151333

Keywords

Navigation