Skip to main content
Log in

A model for the chromosphere-corona transition region based on radio observations and on hydrodynamical conservation equations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In order to avoid the disagreements and difficulties now found in the interpretation of quiet-Sun UV observations concerning the chromosphere-corona transition region, 6- and 11-cm maps obtained at cycle maximum with the Nançay radiotelescope are used in combination with existing measurements of the central brightness temperatures at centimetric wavelengths and with the hydrodynamic conservation equations so as to obtain an equatorial, quiet solar atmosphere model between 10000 K and 300000 K, in the interspicular regions. This model introduces a large ascending velocity in these regions. Some of the consequences of the model concerning the heating and replenishment of the corona are discussed. An explanation of sudden disappearance of quiescent prominences is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Allen, C. W.: 1957, in H. C. van de Hulst (ed.), ‘Radio Astronomy’, IAU Symp. 4, 253.

  • Athay, R. G.: 1961, Physics of the Solar Chromosphere, Interscience Publ., p. 261.

  • Athay, R. G.: 1966a, Astrophys. J. 145, 784.

    Google Scholar 

  • Athay, R. G.: 1966b, Astrophys. J. 146, 223.

    Google Scholar 

  • Athay, R. G. and Canfield, R. C.: 1970, NBS Special publication 332, p. 65.

  • Beckers, J. M.: 1967, Solar Phys. 3, 367.

    Google Scholar 

  • Billings, D. E.: 1966, A Guide to the Solar Corona, Academic Press, p. 297.

  • Burton, W. B., Jordan, C., Pidgeley, A., and Wilson, R.: 1970, Preprint.

  • Ceballos, J. C. and Lantos, P.: 1972, Solar Phys., 22, 281.

    Google Scholar 

  • Chambe, G. and Lantos, P.: 1971, Solar Phys. 17, 97.

    Google Scholar 

  • Cox, D. P. and Tucker, W. H.: 1969, Astrophys. J. 157, 1157.

    Google Scholar 

  • Cuny, Y.: 1971, Solar Phys. 16, 293.

    Google Scholar 

  • D'Azambuja, L. and M.: 1948, Ann. Observ. Meudon 6, Fasc. 7.

  • Delache, P.: 1967, Ann. Astrophys. 30, 827.

    Google Scholar 

  • Delache, P.: 1969, Conference on Chromosphere-Corona Transition Region, NCAR, Boulder.

    Google Scholar 

  • Delcroix, A. and Lemaire, A.: 1969, Astrophys. J. 156, 787.

    Google Scholar 

  • Dupree, A. K. and Goldberg, L.: 1967, Solar Phys. 1, 229.

    Google Scholar 

  • Jordan, C.: 1969, Monthly Notices Roy. Astron. Soc. 142, 501.

    Google Scholar 

  • Ivanov-Kholodnyi, G. S. and Nikolskii, G. M.: 1961, Soviet Astron. 5, 31.

    Google Scholar 

  • Kanno, M.: 1966, Publ. Astron. Soc. Japan 18, 103.

    Google Scholar 

  • Krishnan, T. and Labrum, N. R.: 1961, Australian J. Phys. 14, 403.

    Google Scholar 

  • Kopp, R. A. and Kuperus, M.: 1968, Solar Phys. 4, 212.

    Google Scholar 

  • Kundu, M. R.: 1965, Solar Radio Astronomy, Chap. 3, Interscience Publ.

  • Kuperus, M.: 1965, Rech. Astron. Obs. Utrecht XVII.

  • Kuperus, M. and Athay, R. G.: 1967, Solar Phys. 1, 361.

    Google Scholar 

  • Labrum, N. R.: 1960, Australian J. Phys. 13, 700.

    Google Scholar 

  • Moriyama, F.: 1961, Ann. Tokyo Astron. Obs. VII, No. 3.

  • Nakada, M. P.: 1969, Solar Phys. 7, 302.

    Google Scholar 

  • Newkirk, G.: 1961, Astrophys. J. 133, 982.

    Google Scholar 

  • Noyes, R. W. and Kalkofen, W.: 1970, Solar Phys. 15, 120.

    Google Scholar 

  • Orrall, F. Q. and Zirker, J. B.: 1961, Astrophys. J. 134, 72.

    Google Scholar 

  • Osterbrock, D. E.: 1961, Astrophys. J. 134, 347.

    Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Chap. VII, Interscience Publ.

  • Pecker, J. C. and Pottasch, S. R.: 1969, Astron. Astrophys. 2, 81.

    Google Scholar 

  • Piddington, J. H.: 1954, Astrophys. J. 119, 531.

    Google Scholar 

  • Pottasch, S. R.: 1964, Space Sci. Rev. 3, 816.

    Google Scholar 

  • Pottasch, S. R.: 1965, Bull. Astron. Inst. Neth. 18, 7.

    Google Scholar 

  • Simon, M. and Zirin, H.: 1969, Solar Phys. 9, 317.

    Google Scholar 

  • Smerd, S. F.: 1950, Australian J. Sci. Res. A3, 34.

    Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience Publ.

  • Swarup, G.: 1961, Doctoral Thesis, Stanford University.

  • Uchida, Y.: 1963, Publ. Astron. Soc. Japan 15, 376.

    Google Scholar 

  • Ulmschneider, P.: 1971, Astron. Astrophys. 12, 297.

    Google Scholar 

  • Van de Hulst, H. C.: 1950, Bull. Astron. Neth. 11, 135.

    Google Scholar 

  • Withbroe, G. L.: 1970, Solar Phys. 11, 208.

    Google Scholar 

  • Wooley, R. and Allen, C. W.: 1950, Monthly Notices Roy. Astron. Soc. 110, 358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lantos, P. A model for the chromosphere-corona transition region based on radio observations and on hydrodynamical conservation equations. Sol Phys 22, 387–401 (1972). https://doi.org/10.1007/BF00148704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148704

Keywords

Navigation