Skip to main content
Log in

An early estimate for the size of cycle 23

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Two features are found in the modern era sunspot record (cycles 10–22: ca. 1850-present) that may prove useful for gauging the size of cycle 23, the next sunspot cycle, several years ahead of its actual onset. These features include an inferred long-term increase against time of maximum amplitude (RM, the maximum value of smoothed sunspot number for a cycle) and the apparently inherent differing natures of even- and odd-numbered sunspot cycles, especially when grouped consecutively as ‘even-odd’ cycle pairs. Concerning the first feature, one finds that 6 out of the last 6 sunspot cycles have had RM ≥ 110.6 (the median value for the modern era record) and that 4 out of 6 have had RM > 150. Presuming this trend to continue, one anticipates that cycle 23 will likewise have RM ≥ 110.6 and, perhaps, RM > 150. Concerning the second feature, one finds that, when one groups sunspot cycles into consecutively paired even-odd cycles, the odd-following cycle has always been the larger cycle, 6 out of 6 times. Because cycle 22 had RM = 158.5, one anticipates that cycle 23 will have RM > 158.5. Additionally, because the average ‘difference’ between RM(odd) and RM(even) for consecutively paired even-odd cycles is 40.3 units (sd = 14.2), one expects cycle 23 to have RM ≥ 162.3 (RM = 198.8 ± 36.5 at the 95% level of confidence). Further, because of the rather strong linear correlation (r = 0,959, se = 13.5) found between RM(odd) and RM(even) for consecutively paired even-odd cycles, one infers that cycle 23 should have RM ≥ 176.4 (RM = 213.9 ± 37.5 at the 95% level of confidence). Since large values of RM tend to be associated with fast rising cycles of short ascent duration and high levels of 10.7-cm solar radio flux, cycle 23 is envisioned to be potentially one of the greatest cycles of the modern era, if not the greatest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahcall, J. N. and Press, W. H.: 1991, Astrophys. J. 370, 730.

    Google Scholar 

  • De Jager, C.: 1959, in S. Flügge (ed.), Encyclopedia of Physics, Vol. LII, Astrophysics III: The Solar System, Springer-Verlag, Berlin, p. 150.

    Google Scholar 

  • Everitt, B. S.: 1977, The Analysis of Contingency Tables, John Wiley and Sons, New York.

    Google Scholar 

  • Friis-Christensen, E. and Lassen, K.: 1991, Science 254, 698.

    Google Scholar 

  • Gnevyshev, M. N. and Ohl, A. I.: 1948, Astron. Zh. 25, 18.

    Google Scholar 

  • Gorney, D. J.: 1989, J. Spacecraft Rockets 26, 428.

    Google Scholar 

  • Gorney, D. J.: 1990, Rev. Geophys. 28, 315.

    Google Scholar 

  • Hale, G. E. and Nicholson, S. B.: 1938, Publ. Carnegie Inst., No. 498.

  • Howard, R.: 1977, in A. Bruzek and C. J. Durrant (eds.), Illustrated Glossary for Solar and Solar-Terrestrial Physics, Vol. 69, Astrophysics and Space Science Library, D. Reidel Publ. Co., Dordrecht, Holland, p. 7.

    Google Scholar 

  • Kelly, P. M. and Wigley, T. M. L.: 1990, Nature 347, 460.

    Google Scholar 

  • Krauss, L. M.: 1990, Nature 348, 403.

    Google Scholar 

  • Kurth, W. S.: 1991, Nature 353, 705.

    Google Scholar 

  • Lapin, L. L.: 1978, Statistics for Modern Business Decisions (2nd ed.), Harcourt Brace Jovanovich, Inc., New York.

    Google Scholar 

  • Layden, A. C., Fox, P. A., Howard, J. M., Sarajedini, A., Schatten, K. H., and Sofia, S.: 1991, Solar Phys. 132, 1.

    Google Scholar 

  • McKinnon, J. A.: 1987, Report UAG-95, World Data Center A for Solar-Terrestrial Physics, Boulder, Colorado, 112 pp.

    Google Scholar 

  • Rabin, D. M., De Vore, C. R., Harvey, K. L., Hoeksema, J. T., and Sheeley, N. R., Jr.: 1990, NOAO Preprint No. 352, NOAO, Tucson, Arizona, 77 pp.

    Google Scholar 

  • Reid, G. C.: 1991, J. Geophys. Res. 96, 2835.

    Google Scholar 

  • Vampola, A. L.: 1989, J. Spacecraft Rockets 26, 416.

    Google Scholar 

  • Vitinskii, Yu. I.: 1965, Solar Activity Forecasting, NASA TT F-289, Washington, D. C., 129 pp.

  • Waldmeier, M.: 1961, The Sunspot-Activity in the Years 1610–1960, Schultness and Co., Zürich.

    Google Scholar 

  • Walterscheid, R. L.: 1989, J. Spacecraft Rockets 26, 439.

    Google Scholar 

  • Willson, R. C.: and Hudson, H. S.: 1991, Nature 351, 42.

    Google Scholar 

  • Wilson, R. M.: 1987a, J. Geophys. Res. 92, 10101.

    Google Scholar 

  • Wilson, R. M.: 1987b, Solar Phys. 111, 255.

    Google Scholar 

  • Wilson, R. M.: 1987c, Solar Phys. 112, 1.

    Google Scholar 

  • Wilson, R. M.: 1988a, Solar Phys. 115, 397.

    Google Scholar 

  • Wilson, R. M.: 1988b, Solar Phys. 117, 179.

    Google Scholar 

  • Wilson, R. M.: 1988c, Solar Phys. 117, 269.

    Google Scholar 

  • Wilson, R. M.: 1988d, J. Geophys. Res. 93, 10011.

    Google Scholar 

  • Wilson, R. M.: 1989, NASA Tech. Paper 2948, NASA, Marshall Space Flight Center, Huntsville, Alabama, 54 pp.

    Google Scholar 

  • Wilson, R. M.: 1990a, Solar Phys. 125, 133.

    Google Scholar 

  • Wilson, R. M.: 1990b, Solar Phys. 125, 143.

    Google Scholar 

  • Wilson, R. M.: 1990c, Solar Phys. 127, 199.

    Google Scholar 

  • Withbroe, G. L.: 1989, J. Spacecraft Rockets 26, 394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R.M. An early estimate for the size of cycle 23. Sol Phys 140, 181–193 (1992). https://doi.org/10.1007/BF00148438

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00148438

Keywords

Navigation