Skip to main content
Log in

Numerically regular hereditary classes of combinatorial geometries

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A hereditary class ℋ of combinatorial geometries (or simple matroids) is a collection of geometries closed under minors and direct sums. A geometry G in ℋ is extremal if no proper extension of G of the same rank is in ℋ. The size function h(n) of ℋ is defined by h(n)=max {|G|: G∈ℋ and rank(G)=n}, where |G| is the number of points in G. A hereditary class is numerically regular if for every extremal geometry G in ℋ, |G|=h (rank(G)). We determine all the numerically regular hereditary classes for which the set {h(n)h(n−1): 1≤n<∞} of positive integers does not have an upper bound: they are all varieties. We also give several examples of numerically regular hereditary classes which are not varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., Lattice Theory (3rd edn), Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., Providence, R. I., 1967.

    Google Scholar 

  2. Brylawski, T., ‘Modular Constructions for Combinatorial Geometries’, Trans. Amer. Math. Soc. 203 (1975), 1–44.

    Google Scholar 

  3. Crapo, H. H. and Rota, G.-C., On the Foundations of Combinatorial Theory: Combinatorial Geometries (Prelim. edn), M.I.T. Press, Cambridge, Mass. 1970.

    Google Scholar 

  4. Edmonds, J., ‘Submodular Functions, Matroids, and Certain Polyhedra’, Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alberta), Gordon and Breach, New York, 1970, pp. 69–87.

    Google Scholar 

  5. Inukai, T. and Weinberg, L., ‘Whitney Connectivity of Matroids’, SIAM J. Alg. Discrete Methods 2 (1981), 108–120.

    Google Scholar 

  6. Kahn, J. and Kung, J. P. S., ‘Varieties of Combinatorial Geometries’, Trans. Amer. Math. Soc. 271 (1982), 485–499.

    Google Scholar 

  7. Kahn, J. and Kung, J. P. S., ‘A Classification of Modularly Complemented Geometric Lattices’, Europ. J. Comb. (to appear).

  8. Li, W., ‘On Matroids of the Greatest W-Connectivity’, J. Comb. Theory 35 (1983), 20–27.

    Google Scholar 

  9. Mader, W., ‘Homomorphieeigenschaften und mitlere Kantendichte von Graphen’, Math. Ann. 174 (1967), 265–268.

    Google Scholar 

  10. Ore, O., The Four-Color Problem, Academic Press, New York, London, 1967.

    Google Scholar 

  11. Stanley, R. P., ‘Modular Elements of Geometric Lattices’, Algebra Universalis 1 (1971), 214–217.

    Google Scholar 

  12. Stonesifer, J. R., ‘Modularly Complemented Geometric Lattices’, Discrete Math. 32 (1980), 85–88.

    Google Scholar 

  13. Wagner, K., ‘Bemerkungen zu Hadwigers Vermutung’, Math. Ann. 141 (1960), 433–451.

    Google Scholar 

  14. Welsh, D. J. A., Matroid Theory, Academic Press, 1976.

  15. White, N. L. (ed.). Theory of Matroids, Cambridge Univ. Press, Cambridge, 1985.

    Google Scholar 

  16. Whitney, H., ‘Non-separable and Planar Graphs’, Trans. Amer. Math. Soc. 34 (1932), 339–362.

    CAS  PubMed  Google Scholar 

  17. Zaslavsky, T., ‘Signed Graphs’, Discrete Appl. Math. 4 (1982), 47–74; erratum, ibid. 5 (1983) 248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by a North Texas State University Faculty Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, J.P.S. Numerically regular hereditary classes of combinatorial geometries. Geom Dedicata 21, 85–105 (1986). https://doi.org/10.1007/BF00147534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147534

Keywords

Navigation