Skip to main content
Log in

Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a salt marsh, Sapelo Island, USA

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The distribution and abundance of Enchytraeidae and Tubificidae in and around Spartina alterniflora plants in a tidal salt marsh on Sapelo Island, Georgia, USA were studied using two different sampling techniques: wet funnel extraction and stem dissection. At least 80% of all worms inhabited leaf sheaths at the bases of S. alterniflora plants, and densities were low in sediment, root and surface debris samples. Oligochaete densities were dependent on the position within the marsh, the height on stems and the stage of sheath decay. Six predominant species were identified and included Marionina appendiculata, Marionina spartinae, Marionina waltersi, Marionina paludis, and Monopylephorus parvus. Individual species were distributed differently on stems and enchytraeids were more common than tubificids on standing-dead and further up S. alterniflora stems. Estimates of oligochaete densities in salt marsh habitats are increased dramatically when the numbers of worms on stems are considered. Possible advantages of the stem microhabitat are discussed in relation to the biology and ecology of oligochaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C. E., 1974. A review of the structure in several North Carolina salt marsh plants. In R. J. Reimold & W. H. Queen (eds), Ecology of Halophytes. Academic Press, New York: 307–344.

    Google Scholar 

  • Armstrong, W., 1975. Waterlogged soils. In J. R. Etherington (ed.), Environment and plant ecology. John Wiley, New York: 181–218.

    Google Scholar 

  • Armstrong, W., 1979. Aeration in higher plants. Adv. hot. Res. 7: 225–332.

    Google Scholar 

  • Backlund, H. O., 1945. Wrack fauna of Sweden and Finland. Ecology and chorology. Opusc. Ent. Suppl. 1945: 1–237.

    Google Scholar 

  • Baker, H. R. & R. O. Brinkhurst, 1981. A revision of the genus Monopylephorus and redefinition of the subfamilies Rhyacodrilinae and Branchiurinae (Tubificidae: Oligochaeta). Can. J. Zool. 59: 939–965.

    Google Scholar 

  • Burke, W. W., 1976. Vertical and horizontal distribution of macroinvertebrates on the cord grass, Spartina alterniflora in a Louisiana salt marsh. Unpublished thesis, Louisiana State University, Baton Rouge, 116 pp.

    Google Scholar 

  • Cammen, L. M., 1979. The macroinfauna of a North Carolina salt marsh. Amer. Midl. Nat. 102: 244–253.

    Google Scholar 

  • Chapman, V. J., 1977. Introduction. In V. J. Chapman (ed.), Ecosystems of the world. 1. Wet coastal ecosystems. Elsevier, New York: 1–29.

    Google Scholar 

  • Coull, B. C. & S. S. Bell, 1979. Perspectives of marine meiofaunal ecology. In R. J. Livingston (ed.), Ecological processes in coastal and marine systems. Plenum, New York: 189–216.

    Google Scholar 

  • Fay, R. R., 1985. A jackknifed chi-squared test for complex samples. J. Am. Statist. Assoc. 80: 148–157.

    Google Scholar 

  • Fienberg, S. E., 1980. The analysis of cross-classified categorical data. MIT Press, Cambridge, Massachusetts, 198 pp.

    Google Scholar 

  • Fiers, F. & P. Rutledge, 1990. Harpacticoid copepods associated with Spartina alterniflora culms from the marshes of Cocodrie, Louisiana (Crustacea, Copepoda). Bull. l'Inst. Sci. nat. Belg. 60: 105–125.

    Google Scholar 

  • Giere, O. & O. Pfannkuche, 1982. Biology and ecology of marine Oligochaeta, a review. Oceanogr. mar. Biol. ann. Rev. 20: 173–308.

    Google Scholar 

  • Gleason, M. L. & J. C. Zieman, 1981. Influence of tidal inundation on internal oxygen supply of Spartina alterniflora and Spartina patens. Est. cstl. Shelf Sci. 13: 47–57.

    Google Scholar 

  • Hausman, S. A., 1932. A contribution to the ecology of the salt marsh snail, Melampus bidentatus Say. Amer. Nat. 66: 541–545.

    Google Scholar 

  • Healy, B., 1987. The depth distribution of Oligochaeta in an Irish quaking marsh. Hydrobiologia 155: 235–247.

    Google Scholar 

  • Healy, B., in press. New species of Marionina (Oligochaeta, Enchytraeidae) from Spartina marshes on Sapelo Island, Georgia, USA. Proc. biol. Soc. Wash.

  • Healy, B. & E. Rota, 1992. Methods for collecting Enchytraeidae during expeditions. Soil. Biol. Bioch. 24: 1279–1281.

    Google Scholar 

  • Jackson, D., C. F. Mason & S. P. Long, 1985. Macroinvertebrate populations and production on a salt-marsh in east England dominated by Spartina anglica. Oecologia 65: 406–411.

    Google Scholar 

  • Kneib, R. T., 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7: 392–412.

    Google Scholar 

  • Kneib, R. T., 1987. Seasonal abundance, distribution and growth of postlarval and juvenile grass shrimp (Palaemonetes pugio) in a Georgia, USA, salt marsh. Mar. Biol. 96: 215–223.

    Google Scholar 

  • Kneib, R. T., 1988. Testing for indirect effects of predation in an intertidal soft-bottom community. Ecology 69: 1795–1805.

    Google Scholar 

  • Knox, G. A., 1986. Estuarine ecosystems: a systems approach. CRC Press, Inc., Florida, 289 pp.

    Google Scholar 

  • Kraeuter, J. N. & P. L. Wolf, 1974. The relationship of marine macroinvertebrates to salt marsh plants. In R. J. Reimold & W. H. Queen (eds), Ecology of Halophytes. Academic Press, New York: 449–462.

    Google Scholar 

  • McMahan, E. A., 1972. Relative abundance of three marsh floor organisms in a sewage-affected marsh and a sewagefree marsh. J. Elisha Mitchell Sci. Soc. 88: 61–65.

    Google Scholar 

  • May, M. S., 1974. Probable agents for the formation of detritus from the halophyte Spartina alterni flora. In R. J. Reimold & W. H. Queen (eds), Ecology of Halophytes. Academic Press, New York: 429–440.

    Google Scholar 

  • Mendelssohn, I. A. & K. L. McKee, 1987. Root metabolic response of Spartina alterniflora to hypoxia. In R. M. M. Crawford (ed.), Plant life in aquatic and amphibious habitats. Blackwell, London: 239–253.

    Google Scholar 

  • Morris, J. T. & B. Haskin, 1990. A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71: 2209–2217.

    Google Scholar 

  • Norusis, M. J., 1990. SPSS/PC+ advanced statistics 4.0 for the IBM PC/XT/AT and PS/2. SPSS Inc., Chicago: 139–158.

    Google Scholar 

  • O'Connor, F. B., 1955. Extraction of enchytraeid worms from a coniferous forest soil. Nature 175: 815–816.

    Google Scholar 

  • Pomeroy, L. R. & R. G. Wiegert, 1981. The ecology of a salt marsh. Springer-Verlag, New York, 271 pp.

    Google Scholar 

  • Pomeroy, L. R., L. R. Shenton, R. D. H. Jones & R. J. Reimold, 1972. Nutrient flux in estuaries. In G. E. Likens (ed.), Nutrients and Eutrophication. Amer. Soc. Limnol. Oceanogr. Spec. Symp. 1: 274–291.

  • Ponnamperuna, F. N., 1972. The chemistry of submerged soils. Adv. Agron. 24: 29–96.

    Google Scholar 

  • Radar, D. N., 1984. Salt-marsh invertebrates: small-scale patterns of distribution and abundance. Estuaries 7: 413–420.

    Google Scholar 

  • Reimold, R. J., J. L. Gallagher & D. E. Thompson, 1973. Remote sensing of tidal marsh. Photog. Engng. 39: 477–488.

    Google Scholar 

  • Rozas, L. P. & M. W. LaSalle, 1990. A comparison of the diets of the Gulf killifish, Fundulus grandis, entering and leaving a Mississippi brackish marsh. Estuaries 13: 332–336.

    Google Scholar 

  • Rutledge, P. A. & J. W. Fleeger, in press. Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with Spartina altemiflora stems. Estuaries

  • Siebers, D. & V. Ehlers, 1978. Transintegumentary absorption of acidic amino acids in the oligochaete annelid Enchytraeus albidus. Comp. Biochem. Physiol. A. Comp. Physiol. 61: 55–60.

    Google Scholar 

  • Smart, R. M., 1982. Distribution and environmental control of productivity and growth form of Spartina alterniflora Loisel.. In D. N. Sen & K. S. Rajpurohit (eds), Contributions to the ecology of halophytes. Junk, Amsterdam: 127–142.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman & Co., San Francisco, 857 pp.

    Google Scholar 

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624.

    Google Scholar 

  • Teal, J. M. & J. Kanwisher, 1961. Gas exchange in a Georgia salt marsh. Limnol. Oceanogr. 6: 388–399.

    Google Scholar 

  • Teal, J. M. & J. Kanwisher, 1966. Gas transport in the marsh grass Spartina alterniflora. J. exp. Bot. 17: 355–361.

    Google Scholar 

  • Van Dolah, R. F., 1978. Factors regulating the distribution and population dynamics of the amphipod Gammarus palustris in an intertidal salt marsh community. Ecol. Monogr. 48: 191–217.

    Google Scholar 

  • Wiegert, R. G., A. G. Chalmers & P. F. Randerson, 1983. Productivity gradients in salt marshes: the response of Spartina alterniflora to experimentally manipulated soilwater movement. Oikos 41: 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Healy, B., Walters, K. Oligochaeta in Spartina stems: the microdistribution of Enchytraeidae and Tubificidae in a salt marsh, Sapelo Island, USA. Hydrobiologia 278, 111–123 (1994). https://doi.org/10.1007/BF00142318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142318

Key words

Aerenchyma tissue

Navigation