Skip to main content
Log in

Simulated effects of increasing atmospheric CO2 and changing climate on the successional characteristics of Alpine forest ecosystems

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Possible effects of changing climate and increasing CO2 on forest stand development were simulated using a forest succession model of the JABOWA/FORET type. The model was previously tested for its ability to generate plausible community patterns for Alpine forest sites ranging from 220 m to 2000 m a.s.l., and from xeric to mesic soil moisture conditions. Each model run covers a period of 1000 yrs and is based on the averaged successional characteristics of 50 forest plots with an individual size of 1/12 ha. These small forest patches serve as basic units to model establishment, growth, and death of individual trees. The simulated CO2 scenario assumes linear climate change as atmospheric CO2 concentration increases from 310 μl/l to 620 μl/l and finally to 1340 μl/l. Direct effects of increasing CO2 on tree growth were modeled using tree-ring and growth chamber data. The simulation experiment proved to be a useful tool for evaluating possible vegetation changes that might occur under CO2-induced warming. On xeric sites from the colline to the high montane belt, the simulated climate change causes drastic soil water losses due to elevated evapotranspiration rates. This translates into a significant biomass decrease and even to a loss of forest on xeric low-elevation sites. Biomass gains can be reported from mesic to intermediate sites between 600 and 2000 m a.s.l. Increasing CO2 and warming alters the species composition of the simulated communities considerably. In today's montane and subalpine belt an invasion of deciduous tree species can be expected. They outcompete most conifers which in turn may migrate to today's alpine belt. Some of these changes occur as early as 40 yrs after climate begins to change. This corresponds to a mean annual warming of 1.5°C compared with today's mean temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, G. 1954. Bäume und Sträucher des Waldes. Neumann, Neudamm.

    Google Scholar 

  • Bernatzky, A. 1978. Tree ecology and preservation. Elsevier, Amsterdam.

    Google Scholar 

  • Bacastow, R. and Keeling, C.D. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: Changes from AD 1700 to 2070 as deduced from a geochemical model. In: Carbon and the Biosphere, pp. 86–117. Edited by G.M. Woodwell and E.V. Pecan. Atomic Energy Commission report CONF-720510, Washington DC.

  • Björkman, O. and Pearcy, R.W. 1983. Physiological effects. In: CO2 and plants. Edited by E.R. Lemon. Westview Press, Boulder.

    Google Scholar 

  • Botkin, D.B., Janak, J.F. and Wallis, J.R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849–872.

    Google Scholar 

  • Bray, J.R. 1956. Gap-phase replacement in a maple-basswood forest. Ecology 37: 598–600.

    Google Scholar 

  • Burnand, J. 1976. Quercus pubescens - Wälder und ihre ökologischen Grenzen im Wallis (Zentralalpen). Veröff. Geobot. Inst. ETH Zürich, Stiftung Rübel, No. 59.

  • Carlson, R.W. and Bazzaz, F.A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water-use efficiency of plants. In: Environmental and climatic impact of coal utilities. Edited by J.J. Singh and A. Deepak. Academic Press, New York.

    Google Scholar 

  • Conroy, J.P., Smillie, R.M., Küppers, M., Bevege, D.I. and Barlow, E.W. 1986. Chlorophyll A fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 81: 423–429.

    Google Scholar 

  • Curtis, J.T. 1959. The vegetation of Wisconsin. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Dale, V.H. and Hemstrom, M. 1984. CLIMACS: A Computer Model of Forest Stand Development for Western Oregon and Washington. Res. Paper PNW-327. Pacific Northwest Forest and Range Experiment Station. USDA, Forest Service.

  • Dale, V.H. and Gardner, R.H. 1987. Assessing regional impacts of growth declines using a forest succession model. J. Environ. Manage. 24: 83–93.

    Google Scholar 

  • Edig. Anstalt für das forstliche Versuchswesen (EAFV) 1988: Schweizerisches Landesforstinventar. Ergebnisse der Erstaufnahme 1982–1986. Eidg. Anst. forstl. Versuchswes. Ber. 305.

  • Ellenberg, H. 1979. Zeigerwerte der Gefässpflanzen Mitteleuropas. 2. ed. Scripta Geobotanica 9: 5–28; 37–122.

    Google Scholar 

  • Ellenberg, H. 1982. Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. 3. ed. Ulmer, Stuttgart.

    Google Scholar 

  • Flühler, H. 1981. Waldschäden im Walliser Rhonetal. Eidg. Anst. forstl. Versuchswes. Mitt. 57.

  • Forman, R.T.T. and Godron, M. 1981. Patches and structural components for a landscape ecology. BioScience 31: 733–740.

    Google Scholar 

  • Gammon, R.H., Sundquist, E.T. and Fraser, P.J. 1985. History of carbon dioxide in the atmosphere. In: Atmospheric carbon dioxide and the global carbon cycle, pp. 27–62. Edited by J.R. Trabalka. Report DOE/ER-0239. U.S. Department of Energy, Washington.

    Google Scholar 

  • Gates, D.M. 1985. Global biospheric response to increasing atmospheric carbon dioxide concentration. In: Direct effects of increasing carbon dioxide on vegetation. pp. 171–184. Edited by B.R. Strain and J.D. Cure. Report DOE/ER-0238. US Department of Energy, Washington.

    Google Scholar 

  • Graybill, D.A. 1987. A network of high elevation conifers in the western U.S. for detection of tree-ring growth response to increasing atmospheric carbon dioxide. In: Proc. Int. Symp. on Ecological Aspects of Tree-Ring Analysis. 17–21 Aug. 1986. Palisades, N.Y. pp. 463–474. Edited by G.C. Jacoby Jr. and J.W. Hornbeck. Conference Report CONF-8608144. US Dept. of Energy, Washington DC.

    Google Scholar 

  • Grove, J.M. 1988. The little ice age. Methuen, London.

    Google Scholar 

  • Hari, P., Arovaara, H., Raunemaa, T. and Hautojarvi, A. 1984. Forest growth and the effects of energy production: A method for detecting trends in the growth potential of trees. Can. J. For. Res. 14: 437–440.

    Google Scholar 

  • Holtmeier, F.K. 1980. Influence of wind on tree-physiognomy at the upper timberline in the Colorado Front Range. In: Mountain Environments and Subalpine Tree Growth. pp. 247–261. Edited by U. Benecke and M.R. Davis. Forest Research Institute Technical Paper No. 70. New Zealand Forest Service.

  • Hulme, M., Wigley, T.M.L., Jones, P.D. 1990. Limitations of regional climate scenarios for impact analysis. In: Proc. Europ. Conf. on Landscape ecological impact of climatic change. pp. 111–129. Edited by M.M. Boer and R.S. deGroot. IOS Press, Amsterdam.

    Google Scholar 

  • Jacoby, G.C. 1986. Long-term temperature trends and a positive departure from the climate-growth response since the 1950s in high elevation lodgepole pine from California. In: Proc. of the NASA Conference on Climate-Vegetation Interactions, Greenbelt, Maryland, Jan 27–29, 1986, pp. 81–83. Edited by C. Rosenzweig and R. Dickinson. Report OIES-2. Office for Interdisciplinary Earth Studies (OIES), University Corporation for Atmospheric Research (UCAR), Boulder, Colorado.

    Google Scholar 

  • Kienast, F. 1987. FORECE-a forest succession model for southern Central Europe. Report ORNL/TM 10575. Environmental Sciences Division. Publication No. 2989, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

    Google Scholar 

  • Kienast, F. and Luxmoore, R.J. 1988. Tree ring analysis and conifer growth responses to increased atmospheric CO2 levels. Oecologia 76: 487–495.

    Google Scholar 

  • Kienast, F. and Kuhn, N. 1989. Simulating forest succession along ecological gradients in southern Central Europe. Vegetatio 79: 7–20.

    Google Scholar 

  • Kramer, P.J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31: 29–33.

    Google Scholar 

  • LaMarche, V.C. Jr., Graybill, D.A., Fritts, H.C. and Rose, M.R. 1984. Increasing atmospheric carbon dioxide: tree-ring evidence for growth enhancement in natural vegetation. Science 225: 1019–1021.

    Google Scholar 

  • Luxmoore, R.J., O'Neill, E.G., Ells, J.M. and Rogers, H.H. 1986. Nutrient uptake and growth responses of Virginia Pine to elevated atmospheric carbon dioxide. J. Environ. Qual. 15: 244–251.

    Google Scholar 

  • MacCracken, M.C. and Luther, P.M. (eds.) 1985. Detecting the climatic effects of increasing carbion dioxide. U.S. Department of Energy. Report DOE/ER-0235. Washington DC.

    Google Scholar 

  • Manabe, S. and Stouffer, R.J. 1980. Sensitivity of a global model to an increase of CO2 in the atmosphere. J. Geophys. Res. 85: 5529–5550.

    Google Scholar 

  • Manabe, S. and Wetherald, R.T. 1980. On the distribution of climate change resulting from an increase in CO2-content of the atmosphere. J. Atmos. Sci. 37: 99–118.

    Google Scholar 

  • McLaughlin, S. and Bräker, O.U. 1985. Methods for evaluating and predicting forest growth responses to air pollution. Experientia 41: 310–319.

    Google Scholar 

  • Mitchell, J.F.B. 1983. The seasonal response of a general circulation model to changes in CO2 and sea temperatures. QJR Meteorol. Soc. 109: 113–152.

    Google Scholar 

  • Mitchell, J.F.B. and Lupton, G. 1984. A 4 × CO2 integration with prescribed changes in sea surface temperatures. Prog. Biometeorol. 3: 353–374.

    Google Scholar 

  • Mitscherlich, G. 1970. Wald, Wachstum und Umwelt. Eine Einführung in die ökologischen Grundlagen des Waldwachstums. Sauerländer, Frankfurt a.M.

    Google Scholar 

  • Moor, M., 1952. Die Fagion-Gesellschaften im Schweizer Jura. Beitr. geobot. Landesaufnahme der Schweiz. No. 31, Huber, Bern.

    Google Scholar 

  • Ozenda, P., Borel, J.L. 1990. The possible responses of vegetation to a global climatic change. Scenarios for Western Europe, with special reference to the Alps. In: Proc. Europ. Conf. on Landscape ecological impact of climatic change. pp. 221–249. Edited by M.M. Boer and R.S. deGroot. IOS Press, Amsterdam.

    Google Scholar 

  • Pastor, J. and Post, W.M. 1985. Development of a linked forest productivity-soil process model. Report ORNL/TM-9519. Environmental Sciences Division Publication 2455, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

    Google Scholar 

  • Renner, F. 1982. Beiträgezur Gletschergeschichte des Gotthardgebietes und dendroklimatologische Analysen an fossilen Hölzern. Physische Geographie Vol. 8. Dept. of Geography, Univ. of Zurich, Switzerland.

    Google Scholar 

  • Schmid, E. 1949. Vegetationskarte der Schweiz. Pflanzengeographische Kommission Naturforschende Ges. Schweiz, Bern.

    Google Scholar 

  • Shugart, H.H. 1984. A theory of forest dynamics. Springer, New York.

    Google Scholar 

  • Shugart, H.H. and Emanuel, W.R. 1985. Carbon dioxide increase: the implications at the ecosystem level. Plant, Cell and Environment 8: 381–386.

    Google Scholar 

  • Shugart, H.H. and West, D.C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. J. Environ. Manage. 5: 161–179.

    Google Scholar 

  • Shugart, H.H. and West, D.C. 1980. Forest Succession Models. BioScience 30: 308–313.

    Google Scholar 

  • Solomon, A.M. 1986. Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America. Oecologia (Berlin) 68: 567–579.

    Google Scholar 

  • Solomon, A. and West, D.C. 1987. Simulating forest ecosystem responses to expected climate change in eastern north America: Applications to decision making in the forest industry. In: The greenhouse Effect, Climate change, and U.S. Forests, pp. 189–217. The Conservation Foundation, Washington.

    Google Scholar 

  • Stein, N. 1978. Die standörtliche Verbreitung und klimaökolo-gische Abgrenzung waldbildender submediterraner (Quercus pubescens), subborealer (Pinus silvestris) und mitteleuropäisch-montaner Florenelemente (A bies alba) am Beispiel des mittleren Wallis (Zentralalpen). Geographica Helvetica 33: 93–112.

    Google Scholar 

  • Stockton, C.W. 1984. An alternative hypothesis to direct CO2 fertilization as a cause of increased growth during 1850–1980 in Central Nevada. Preliminary report, Laboratory of Tree-Ring Research, Univ. of Arizona.

  • Trabalka, J.R. (ed.) 1985. Atmospheric carbon dioxide and the global carbon cycle. US Department of Energy Report DOE/ER-0239. Washington DC.

  • Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  • Wigley, T.M.L. and Jones, P.D. 1988. A climate scenario for Europe. Unpubl. manuscript for the preparation of case studies to the European conference on landscape ecological impact of climatic change. LICC secretariat, Utrecht, NL.

    Google Scholar 

  • Williams, W.E., Garbutt, K., Bazzaz, F.A. and Vitousek, P.M. 1986. The response of plants to elevated CO2. IV. Two deciduous-forest tree communities. Oecologia 69: 454–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienast, F. Simulated effects of increasing atmospheric CO2 and changing climate on the successional characteristics of Alpine forest ecosystems. Landscape Ecol 5, 225–238 (1991). https://doi.org/10.1007/BF00141437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141437

Keywords

Navigation