Skip to main content
Log in

Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a theoretical-numerical investigation of porosity variations induced by temperature gradients in unsaturated saline media. It is known that temperature variations cause humidity variations which lead to liquid flow towards and vapour flow away from the hot source. When this phenomenon occurs in saline media, the liquid is salt saturated brine, so that evaporation causes salt precipitation and an ensuing porosity reduction. Condensation of water causes salt dissolution and porosity increase. This process may be important in the case of heat generating waste because it suggests that selfsealing may take place near the waste. On the other hand, salt mass balance will lead to porosity increases in other zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

body forces vector in equilibrium equation (FL−3)

D :

thermal diffusivity (L2T−1)

D ία :

dispersion tensor (i = h, w for α = l and i = w, a for α = g) (ML−1T−1

D ίm :

molecular diffusion coefficient (i = h, w) (L2T−1)

D lα :

mechanical dispersion tensor α = l, g (L2T−1)

d l , d t :

longitudinal and transversal dispersivities (L)

E α :

internal energy of α-phase per unit mass of α-phase (EM−1)

E ία :

internal energy of i-species in α-phase per unit mass of i-species (EM−1)

f ί :

external mass supply per unit volume of medium (i = h, w, a) (ML−3T−1)

f E :

internal/external energy supply per unit volume of medium (EL−3T−1)

f ws :

internal sink of water in fluid inclusion equation (ML−3T−1)

g:

gravity vector (LT−2)

i :

species index, h salt (halite), w water and a air (superscript)

I :

identity matrix

i ία :

nonadvective mass flux of i-species in α-phase (ML−2T−1)

i c :

nonadvective heat flux (EL−2T−1)

j Eα :

advective energy flux in α-phase w.r.t a fixed reference system (EL−2T−1)

j' Eα :

advective energy flux in α-phase w.r.t. the solid phase (EL−2T−1)

j ία :

total mass flux of ί-species in α-phase w.r.t. a fixed reference system (ML−2T−1)

j' ί α :

total mass flux of ί-species in α-phase w.r.t. the solid phase (ML−2T−1)

k :

intrinsic permeability tensor (L2)

k :

α-phase relative permeability (α = l, g) (-)

M a :

molecular mass of air (M) (0.02895 kg/mol)

M w :

molecular mass of water (M) (0.018 kg/mol)

P α :

fluid pressure of α-phase (α = l, g) (FL−2)

P v :

partial pressure of vapour (FL−2)

P a :

partial pressure of air (FL−2)

q α :

volumetric flux of α-phase w.r.t. the solid matrix (α = l, g) (LT−1)

R :

constant of gases (EΘ−1) (8.314 J/mol/K)

S α :

volumetric fraction of pore volume occupied by α-phase (α = l, g) (-)

S e :

\(\left( { = \frac{{S_l - S_{lr} }}{{S_{ls} - S_{lr} }}} \right)\) effective liquid saturation

S lr :

residual liquid saturation

S ls :

maximum liquid saturation

T :

temperature (Θ)

u/∂t :

solid velocity vector (LT−1)

α :

phase index, s solid, l liquid and g gas (subscript)

β α :

thermal expansion coefficient (Θ−1)

θ ία :

(= ω ία ρα) mass of ί-species per unit volume of a-phase (ML−3)

λ α :

thermal conductivity (EΘ−1L−1T−1)

μ α :

dynamic viscosity of a-phase (a = l, g) (FL−2T)

▽:

gradient vector (L−1)

ρ α :

mass of α-phase per unit volume of a-phase (ML−3)

φ :

porosity

σ :

stress tensor (FL−2)

σ :

surface tension of liquid (FL−1)

Τ :

tortuosity

ω ία :

mass fraction of ί-species in a-phase

References

  • Abellan, M.: 1994, Approche phénoménologique généralisée et modélisation systématique de milieux hétérogènes. Thèse doctoral, Université de Montpellier II, Directeur de thèse P. Jouanna.

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, American Elsevier, New York.

    Google Scholar 

  • Bear, J., Bensabat, J. and Nir, A.: 1991, Heat anf mass transfer in unsaturated porous media at a hot boundary: I. One-dimensional analytical model, Transport in Porous Media 6, 281–298.

    Article  Google Scholar 

  • Bear, J. and Gilman, A.: 1995, Migration of salts in the unsaturated zone caused by heating, Transport in Porous Media 19, 139–156.

    Article  Google Scholar 

  • Celeda J. and Skramovsky, S.: 1984, The metachor as a characteristic of the association of electrolytes in aqueous solutions, Collection Czechoslovak Chem. Commun. 49, 1061–1078.

    Google Scholar 

  • Custodio, E. and Llamas, M. R.: 1983, Hidrología Subterránea, Ed. Omega, Barcelona, ISBN 84-282-0446-2 (2 volumes).

  • Edlefson, N. E. and Anderson, A. B. C.: 1943, Thermodynamics of soil moisture, Hilgardia 15(2), 31–298.

    Google Scholar 

  • Garrels, R. M. and Christ, C. L.: 1965, Solutions, Minerals and Equilibria, Freeman, Cooper, San Francisco, 0–87735–333–6.

    Google Scholar 

  • van Genuchten, R.: 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., pp. 892–898.

  • Hassanizadeh, S. M. and Leijnse, T.: 1988, On the modeling of brine transport in porous media, Water Resour. Res. 24, 321–330.

    Google Scholar 

  • Horvath, A. L.: 1985, Aqueous Electrolyte Solutions, Physical Properties, Estimation and Correlation Methods, Ellis Horword, Chichester.

    Google Scholar 

  • Langer, H. and Offermann, H.: 1982, On the solubility of sodium chloride in water, Crystal Growth 60, 389–392.

    Google Scholar 

  • Olivella, S., Gens, A., Carrera, J. and Alonso, E. E.: 1993, Behaviour of porous salt aggregates, constitutive and field equations for a coupled deformation, brine, gas and heat transport model, Proc. 3rd Conference on the Mechanical Behaviour of Salt, September 14–16,1993, Ecole Polytechnique, Palaiseau, France, pp. 255–269.

    Google Scholar 

  • Olivella, S., Carrera, J., Gens, A. and Alonso, E. E.: 1994a, Nonisothermal multiphase flow of brine and gas thorough saline media, Transport in Porous Media 15, 271–293.

    Article  Google Scholar 

  • Olivella, S., Carrera, J., Gens, A. and Alonso, E. E.: 1994b, Nonisothermal multiphase flow of brine and gas thorough saline Media. Numerical aspects, J. Numériques de Besançon Computational Methods for Transport in Porous Media, Ed. by J. M. Crolet, pp. 131–150.

  • Pollock, D. W.: 1986, Simulation of Fluid Flow and Energy Transport Processes Associated WIth High-Level Radioactive Waste Disposal in Unsaturated Alluvium, Water Resour. Res. 22(5), 765–775.

    Google Scholar 

  • Ratigan, J. L.: 1984, A finite element formulation for brine transport in rock salt, Int. J. Num. Anal. Meth. Geomech. 8, 225–241.

    Google Scholar 

  • Roedder, E.: 1984, The fluids in salt, Am. Mineralogist 69, 13–439.

    Google Scholar 

  • Rossel, J.: 1974, Física General, Ed. AC, Madrid, ISBN 84-7288-006-0, 805 pp.

  • Spiers, C. J., Schutjens, P. M. T. M., Brzesowsky, R. H., Peach, C. J., Liezenberg, J. L. and Zwart, H. J.: 1990, Experimental determination of constitutive parameters governing creep of rock salt by pressure solution, Geological Society Special Publication No. 54: Deformation Mechanisms, Rheology and Tectonics, pp. 215–227.

  • Sprackling, M. T.: 1985, Liquids and Solids, Student Physics Series, King's College, University of London. Routledge and Kegan Paul, London.

    Google Scholar 

  • Wood, J. R.: 1976, Thermodynamics of brine-salt-equilibria-II. The system NaCl-KC1-H2O from 0 to 200°C. Geochim. Cosmochim. Acta 40, 1211–1220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivella, S., Carrera, J., Gens, A. et al. Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation. Transp Porous Med 25, 1–25 (1996). https://doi.org/10.1007/BF00141260

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141260

Key words

Navigation