Skip to main content
Log in

A major pathway for the regulation of intraocular pressure

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

There has been a suspicion on the part of many clinicians and research scientists that intraocular pressure can be regulated by neural and/or humoral influences upon the rate of aqueous humor formation. It has been difficult, if not impossible, to separate specific influences of the central nervous system upon intraocular pressure from vascular induced or other secondary alterations. The past two decades have witnessed a great deal of study of the role of the adrenergic nervous system upon the regulation of intraocular pressure. From the investigations it is possible to formulate an integrated concept that can place years of work and speculation on a firm molecular foundation. The secretory tissue of the eye, the ciliary processes, contain an enzyme receptor complex, comprised by receptor complex, comprised by receptor bound membrane proteins, the catalytic moiety of the enzyme, a guanyl nucleotide regulatory protein (or N protein) and other features. The enzyme can be activated by well known neurohumoral or humoral agents that consist of catecholamines, glycoprotein hormones produced by the hypothalmic pituitary axis, and other related compounds, including placental gonadotropin. These compounds cause the ciliary epithelia to produce cyclic AMP at an accelerated rate. Cyclic AMP, as a second messenger, causes, either directly or indirectly, a decrease in the rate of aqueous humor formation that may be modulated by cofactors. Clinical syndromes fit the experimental data so that an integrated explanation can be given for the reduced intraocular pressure witnessed under certain central nervous system and adrenergic influences. The molecular biology of this concept provides important leads for future investigations that bear directly both upon the regulation of intraocular pressure and upon glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Araie, M., M. Sawa, S. Nagataki & S. Mishima. Aqueous humor dynamics in man as studied by oral fluorescein. Jpn. J. Ophthalmol. 24: 346–362 (1980).

    Google Scholar 

  2. Becker, B. Vanadate and aqueous humor dynamics. Proctor Lecture Invest. Ophthalmol. Vis. Sic. 19: 1156–1165 (1980).

    Google Scholar 

  3. Becker, B. & J.S. Friedenwald. Clinical aqueous outflow. Arch. Ophthalmol. 50: 557–571 (1953).

    Google Scholar 

  4. Bietti, G.B., M.G. Bucci, J. Pecori-Giraldi et al. Etude sur l'action hypotonisante oculaire du Propranolol et du Propranolol-Pilocarpine par voie locale. Bull. Soc. Ophthalmol. Fr. 84: 509 (1971).

    Google Scholar 

  5. Brand, I. Intraokulare Hypotonie bie Myotonikern. Ophthalmologica 129; 81–88 (1955).

    Google Scholar 

  6. Bromberg, B.B., D.S. Gregory & M.L. Sears. Beta-adrenergic receptors in ciliary processes of the rabbit. Invest. Ophthalmol. Vis. Sci. 19: 203–207 (1980).

    Google Scholar 

  7. Coakes, R.L. & R.F. Brubaker. A method of measuring aqueous humor flow and corneal permeability using a fluorophotometry monogram. Invest. Ophthalmol. Vis. Sci. 18: 288–302 (1979).

    Google Scholar 

  8. De Grosz, E. La Tension intra-oculaire et la grossesse. Ann.d'Ocul. (Budapest) 167–177 (mars 1937).

  9. Duke-Elder, W.S. The aetiology of simple glaucoma. Trans. Ophthalmol. Soc. U.K. 77: 205–228 (1957).

    Google Scholar 

  10. Eakins, K. The effect of intravitreous injections of norepinephrine, epinephrine and isoproterenol on the intraocular pressure and aqueous humor dynamics of rabbit eyes. J. Pharmacol. Exp. Ther. 140: 79–84 (1963).

    Google Scholar 

  11. Elwyn, H. Pathogenesis of chronic simple glaucoma. Arch. Ophthalmol. 19: 986–1008 (1938).

    Google Scholar 

  12. Finidori-Lepicard, J., S. Schorderet-Slatkine, J. Hanoune & E.E. Baulieu. Progesterone inhibits membrane-bound adenylate cyclase in Xenopis laevis oocytes. Nature 292: 255–256 (1981).

    Google Scholar 

  13. Gaasterland, D., C. Kupfer, K. Ross & H.L. Gabelnick. Studies of aqueous humor dynamics in man. 3. Measurements in young normal subjects using norepinephrine and isoproterenol. Invest. Ophthalmol. 12: 267–279 (1973).

    Google Scholar 

  14. Gierkowa, A., E. Samoehowiec & R. Halatek. Influence of gonadotropins and gonadotropic releasing hormones on the intraocular pressure. Klin. Oczna 46: 1005–1008 (1976).

    Google Scholar 

  15. Gregory, D.S., L.P. Bausher, B.B. Bromberg & M.L. Sears. The beta-adrenergic receptor and adenyl cyclase of rabbit ciliary processes. In: New Directions in Ophthalmic Research, ML. Sears, editor, Yale University Press, New Haven, Chapter 8, pp. 127–145 (1981).

    Google Scholar 

  16. Gregory, D.S., M.L. Sears, L. Bausher, H. Mishima & A. Mead. Intraocular pressure and aqueous flow are decreased by cholera toxin. Invest. Ophthalmol. Vis. Sci. 20: 371–381 (1981).

    Google Scholar 

  17. Hamburger, K. Experimentelle Glaukomtherapie. Klin. Monatsbl. Augenheilkunde 71: 810–811 (1923).

    Google Scholar 

  18. Hess, L. Pathogenesis of glaucoma. Arch. Ophthalmol. 33: 392–396 (1946).

    Google Scholar 

  19. Horven, L. & H. Gjonnaess. Corneal indentation pulse and intraocular pressure in pregnancy. Arch. Ophthalmol. 91: 92–98 (1974).

    Google Scholar 

  20. Imre, J. Pregnancy and the eye, their endocrinological relations. XV Concilium Ophthalmol. Egypte, Vol. III, 213–226 (1937).

    Google Scholar 

  21. Jones, R.F. & D.M. Maurice. New methods of measuring the rate of aqueous flow in man with fluorescein. Exp. Eye Res. 5: 208–220 (1966).

    Google Scholar 

  22. Krupin, T., S.M. Podos & B. Becker. The effect of optic nerve transection on osmotic alterations of intraocular pressure. Am. J. Ophthalmol. 70: 214–220 (1970).

    Google Scholar 

  23. Langham, M.E. & C.B. Taylor. The influence of pre- and postganglionic section of the cervical sympathetic on the intraocular pressure of rabbits and cats. J. Physiol. 152: 437–446 (1960).

    Google Scholar 

  24. Liu, H.K. & G.C.Y. Chiou. Continuous, simultaneous, and instant display of aqueous humor dynamics with a microspectrophotometer and a sensitive drop counter. Exp. Eye Res. 32: 583–592 (1981).

    Google Scholar 

  25. Magitot, A. Sur l'origine intra-cranienne de l'atrophie optique glaucomateurse. Ann. Ocul. (Paris) 180: 321 (1947).

    Google Scholar 

  26. Meyer, E.J., C.R. Roberts, H.M. Leibowitz, B. McGowan & R.E. Houle. Influence of norethynodrel with mestranol on intraocular pressure in glaucoma. II. A controlled double-blind study. Arch. Ophthalmol. 75: 771–773 (1966).

    Google Scholar 

  27. Mishima, H., M. Sears, L. Bausher, & D. Gregory. Ultracytochemistry of cholera toxin binding sites in ciliary processes. Cell Tissue Res. 223: 241–253 (1982).

    Google Scholar 

  28. Nagai, M., T. Ban & T. Koratsu. Studies on the changes of the intraocular pressure induced by electrical stimulation of the hypothalamus. Med. j. Osaka Univ. 2: 87–95 (1951).

    Google Scholar 

  29. Nathanson, J.A. Human ciliary process adrenergic receptor: pharmacological characterization. Invest. Ophthalmol. Vis. Sci. 21: 798–804 (1981).

    Google Scholar 

  30. Neufeld, A.H., L.M. Jampol, & M.L. Sears. Cyclic-AMP in the aqueous humor: the effects of adrenergic agents. Exp. Eye Res. 14: 242–250 (1972).

    Google Scholar 

  31. Neufeld, A.H. & M.L. Sears. Cyclic-AMP in the ocular tissues of the rabbit, monkey and human. Invest. Ophthalmol. 13: 475–477 (1974).

    Google Scholar 

  32. Neufeld, A.H., D.K. Dueker, T. Vegge & M.L. Sears. Adenosine 3′,5′-monophosphate increases the outflow of aqueous humor from the rabbit eye. Invest. Ophthalmol. 14: 40–42 (1975).

    Google Scholar 

  33. Neufeld, A.H. & M.L. Sears. Adenosine 3′,5′-monophosphate analogue increases the outflow facility of the primate eye. Invest. Ophthalmol. 14: 688–689 (1975).

    Google Scholar 

  34. Neufeld, A.H. Epinephrine and timolol: How do these drugs lower intraocular pressure? Ann. Ophthalmol. 13: 1109–1111 (1981).

    Google Scholar 

  35. Niebroj, T., A. Gierek, & E. Samochowiec: Urinary excretion of luteinizing hormone in women with glaucoma. Pol. Med. J. 9: 526–528 (1970).

    Google Scholar 

  36. Niebroj, T, A. Gierek, & E. Samochowiec. The influence of chorionic gonadotropin (HCG) on water metabolism in the eye of patients suffering from glaucoma. Pol. Endocrinol. XXII, No. 3: 204–207 (1971).

    Google Scholar 

  37. Paterson, C.A. The effect of sympathetic nerve stimulation on the aqueous humor dynamics of the cocaine pretreated animal. Exp. Eye Res. 5: 37–44 (1966).

    Google Scholar 

  38. Phillips, C.I., G. Howitt, & J. Rowlands. Propranolol as ocular hypotensive agent. Br. J. Ophthalmol. 51: 222–226 (1967).

    Google Scholar 

  39. Radnot, M. Beitrag zur Entstehung der durch Kastration erzeugten Hypotonie. Klin. Monatsbl. Augenheilkunde 115: 524–526 (1949).

    Google Scholar 

  40. Riise, D. & S.E. Simonsen. Intraocular pressure in unilateral optic nerve lesion. Acta Ophthalmol. 47: 750–755 (1969).

    Google Scholar 

  41. Ross, R.A. & S.M. Drance. Effects of topically applied isoproterenol on aqueous dynamics in man. Arch. Ophthalmol. 83: 39–46 (1970).

    Google Scholar 

  42. Salomon, Y. Receptors for the glycoprotein hormones: LH, FSH, hCG and TSH. In: Cellular Receptors for Hormones and Neurotransmitters, D. Schulster and A. Levitzki, editors, Chichester, John Wiley & Son, Chapter 8, pp. 149–161 (1980).

    Google Scholar 

  43. Schmerl, E. & B. Steinberg. Separation of diencephalic centers concerned with pupillary motility and ocular tension. Am. J. Ophthalmol. 33: 1379–1381 (1950).

    Google Scholar 

  44. Sears, M.L. & E.H. Bárány. Effects of cervical sympathectomy with adrenergic inhibitors. Arch. Ophthalmol. 64: 839–848 (1960).

    Google Scholar 

  45. Sears, M.L. Friedenwald Lecture. Perspectives in glaucoma research. Invest. Ophthalmol. Vis. Sci. 17: 6–22 (1978).

    Google Scholar 

  46. Sears, M.L. The aqueous. In: Adler's Physiology of the Eye, 7th edition, R.A. Moses, editor. St. Louis, C.V. Mosby, Chapter 7, pp. 204–226 (1980).

    Google Scholar 

  47. Sears, M.L., D. Gregory, L. Bausher, H. Mishima & J. Stjernschantz. A receptor for aqueous humor formation. In: New Directions in Ophthalmic Research, M.L. Sears, editor, New Haven, Yale University Press, chapter 10, pp. 163–183 (1981).

    Google Scholar 

  48. Treister, G. & S. Mannor. Intraocular pressure and outflow facility. Arch. Ophthalmol. 83: 311–318 (1970).

    Google Scholar 

  49. Trope, G.E., B. Clark & S.J.S. Titinchi. Identification of beta adrenergic receptors in the pigmented mammalian irisciliary body diaphragm. Exp. Eye Res. 34: 153–157 (1982).

    Google Scholar 

  50. Vareilles, P., DL Silverstone, B. Plazonnet, J.-C. LeDouarec, M.L. Sears, & C.A. Stone. Comparison of the effects of Timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest. Ophthalmol. Vis. Sci. 16: 987–996 (1977).

    Google Scholar 

  51. von Hippel, A. & A. Grunhagen. Uber der Einfluss der Nerven auf die Hohe des intraokularen Druckes. Alb. von Graefes Arch. Klin. Exp. Ophthalmol. 15: 27 (1870).

    Google Scholar 

  52. von Sallman, L. & O. Lowenstein. Responses of intraocular pressure, blood pressure and cutaneous vessels to electric stimulation in the diencephalon. Am. J. Ophthalmol. 39: 11–29 (1955).

    Google Scholar 

  53. Waitzman, M.B. & W.D. Woods. Some characterizations of an adenyl cyclase preparation from rabbit ciliary process tissue. Exp. Eye Res. 12: 99–111 (1971).

    Google Scholar 

  54. Weekers, R., Y. Delmarcelle & J. Gustin. Treatment of ocular hypotension by adrenalin and diverse sympathomimetic amines. Am. J. Ophthalmol. 40: 666–672 (1955).

    Google Scholar 

  55. Wentworth, W.O. & R.F. Brubaker. Aqueous humor dynamics in a series of patients with third neuron Horner's syndrome. Amer. J. Ophthalmol. 92: 407–415 (1981).

    Google Scholar 

  56. Wilke, K. Episcleral venous pressure and pregnancy. Acta Ophthalmol. Suppl. 125: 40–41 (1975).

    Google Scholar 

  57. Yablonski, M.E., T.J. Zimmerman, S.R. Waltman, & B. Becker. A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp. Eye Res. 27: 134–142 (1978).

    Google Scholar 

  58. Zimmerman, T.J. & H.E. Kaufman. Timolol. A beta-adrenergic blocking agent for the treatment of glaucoma. Arch. Ophthalmol. 95: 601–604 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants from the Connecticut Lions Eye Research Foundation, Inc., Foresight, Inc., New Haven Foundation, and Research to Prevent Blindness, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sears, M., Mead, A. A major pathway for the regulation of intraocular pressure. Int Ophthalmol 6, 201–212 (1983). https://doi.org/10.1007/BF00141129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141129

Keywords

Navigation