Skip to main content
Log in

A myosin family reunion

  • Review Article
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ALBANESIJ. P., FUJISAKIH. & KORNE. D. (1984) Localization of the active site and phosphorylation site of Acanthamoeba myosins IA and IB. J. Biol. Chem. 259, 14184–9.

    Google Scholar 

  • AVRAHAMK. B., HASSONT., STEELK. P., KINGSLEYD. M. RUSSELLL. B. MOOSEKERM. S., COPELANDN. G. & JENKINSN. A. (1995) The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genetics 11, 369–75.

    Google Scholar 

  • BABIJP. (1993) Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain. Nucleic Acids Res. 21, 1467–71.

    Google Scholar 

  • BAINESI. C. & KORNE. D. (1990) Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluroscence and immunogold electron microscopy. J. Cell Biol. 111, 1895–904.

    Google Scholar 

  • BAINESI. C., BRZESKAH. & KORNE. D. (1992) Differential localization of Acanthamoeba myosin I isoforms. J. Cell Biol. 119, 1193–203.

    Google Scholar 

  • BEMENTW. M. & MOOSEKERM. S. (1995) TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil. Cytoskelet. 31, 87–91.

    Google Scholar 

  • BEMENTW. M., HASSONT., WIRTHJ. A., CHENEYR. E. & MOOSEKERM. S. (1994) Identification and overlapping expression of multiple unconventional myosin genes in vertebrate cell types. Proc. Natl. Acad. Sci. USA 91, 6549–53.

    Google Scholar 

  • BERNSTEINS. I. O'DONNELP. T. & CRIPPSR. M. (1993) Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int. Rev. Cytol. 143, 63–152.

    Google Scholar 

  • BRZESKAH., LYNCHT. J., MARTINB. & KORNE. D. (1989) The localization and sequence of the phosphorylation sites of Acanthamoeba myosins I. An improved method for locating the phosphorylated amino acid. J. Biol. Chem. 264, 19340–8.

    Google Scholar 

  • CHEN, T. L., EDWARDS, K. A., LIN, R. C., COATS, L. W. & KIEHART, D. P. (1991) Drosophila myosin heavy chain at 35 B,C.J. Cell. Biol. 115, 330a.

    Google Scholar 

  • CHENEYR. E. & MOOSEKERM. S. (1992) Unconventional myosins. Curr. Opin. Cell Biol. 4, 27–35.

    Google Scholar 

  • CHENEYR. E., O'SHEAM. K., HEUSERJ. E., COELHOM. V., WOLENSKIJ. S., ESPREAFICOE. M., FORSCHERP., LARSONR. E. & MOOSEKERM. S. (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23.

    Google Scholar 

  • CHOIO. H., PARKC.-S., ITOHK., ADELSTEINR. S. & BEAVENM. A. (1996) Cloning of the cDNA encoding rat myosin heavy chain-A. Evidence for the absence of myosin heavy chain-B in cultured rat Mast (RBL2H3) cells. J. Muscle Res. Cell Motil. 17, 67–75.

    Google Scholar 

  • COLLINSK. & MATSUDAIRAP. (1991) Differential regulation of vertebrate myosins I and II. J. Cell Sci. Suppl. 14, 11–16.

    Google Scholar 

  • COLLINSK., SELLERSJ. R. & MATSUDAIRAP. (1990) Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J. Cell Biol. 110, 1137–47.

    Google Scholar 

  • CONRADP. A., GIULIANOK. A., FISHERG., COLLINSK., MATSUDAIRAP. T. & TAYLORD. L. (1993) Relative distribution of actin, myosin I, and myosin II during the wound healing response of fibroblasts. J. Cell Biol. 120, 1381–91.

    Google Scholar 

  • DELOZANNEA. & SPUDICHJ. A. (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–91.

    Google Scholar 

  • DENARDIC., AUSONIS., MORETTIP., GORZAL., VELLECAM., BUCKINHAMM. & SCHIAFFINOS. (1993) Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. J. Cell Biol. 123, 823–35.

    Google Scholar 

  • DOBERSTEINS. K. & POLLARDT. D. (1992) Localization and specificity of the phospholipid and actin binding sites on the tail of Acanthamoeba myosin IC. J. Cell Biol. 117, 1241–9.

    Google Scholar 

  • ESPINDOLAF. S., ESPREAFICOE. M., COELHOM. V., MARTINSA. R., COSTAF. R., MOOSEKERM. S. & LARSONR. E. (1992) Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin. J. Cell Biol. 118, 359–68.

    Google Scholar 

  • ESPREAFICOE. M., CHENEYR. E., MATTEOLIM., NASCIMENTOA. A., deCAMILLIP. V., LARSONR. E. & MOOSEKERM. S. (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–57.

    Google Scholar 

  • FANNINGA. S., WOLENSKIJ. S., MOOSEKERM. S. & IZANTJ. G. (1994) Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. Cell Motil. Cytoskelet. 29, 29–45.

    Google Scholar 

  • FATHK. R. & BURGESSD. R. (1993) Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J. Cell Biol. 120, 117–27.

    Google Scholar 

  • FISHERA. J., SMITHC. A., THODENJ. B., SMITHR., SUTOHK., HOLDENH. M. & RAYMENTI. (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP·BeF x and MgADP·A1F4 -. Biochemistry 34, 8960–72.

    Google Scholar 

  • FRIEDMAND. J., UMEDAP. K., SINHAA. M., HSUH. J., JAKOVCICS. & RABINOWITZM. (1984) Characterization of genomic clones specifying rabbit alpha- and beta-ventricular myosin heavy chains. Proc. Natl. Acad. Sci. USA 81, 3044–8.

    Google Scholar 

  • FUKUIY., LYNCHT. J., BRZESKAH. & KORNE. D. (1989) Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341, 328–31.

    Google Scholar 

  • GEORGEE. L., OBERM. B. & EMERSONC. P. J. (1989) Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons [published erratum appears in Mol. Cell Biol. (1989) 9, 4118]. Mol. Cell Biol. 9, 2957–74.

    Google Scholar 

  • GIBSONT. J., HYVONENM., MUSACCHIOA. & SARASTEM. (1994) PH domain: the first anniversary. Trends Biochem. Sci. 19, 349–53.

    Google Scholar 

  • GIBSONF., WALSHJ., MBURUP., VARELAA., BROWNK. A., ANTONIOM., BEISELK. W., STEELK. P. & BROWNS. D. M. (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–4.

    Google Scholar 

  • GILLESPIEP. G., WAGNERM. C. & HUDSPETHA. J. (1993) Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron 11, 581–94.

    Google Scholar 

  • GOODSONH. V. (1994) Molecular evolution of the myosin superfamily: application of phylogenetic techniques to cell biological questions. In Molecular Evolution of Physiological Processes (edited by FAMBRUSHD. M.) pp. 141–57. New York: The Rockfeller University Press.

    Google Scholar 

  • GOODSONH. V. & SPUDICHJ. A. (1995) Identification and molecular characterization of a yeast myosin I. Cell Motil. Cytoskel. 30, 73–84.

    Google Scholar 

  • HAARERB. K., PETZOLDA., LILLIES. H. & BROWNS. S. (1994) Identification of MYO4, a second class V myosin gene in yeast. J. Cell Sci. 107, 1055–64.

    Google Scholar 

  • HAMMERJ. A.III (1994) The structure and function of unconventional myosins: a review. J. Muscle Res. Cell Motil. 15, 1–10.

    Google Scholar 

  • HAMMER, J. A., III & JUNG, G. (1996) The sequence of the Dictyostelium Myo J heavy chain gene predicts a novel dimeric unconventional myosin with a heavy chain molecular mass of 258 kDa. J. Biol. Chem., in press.

  • HAMMERJ. A., JUNGG. & KORNE. D. (1986) Genetic evidence that Acanthamoeba myosin I is a true myosin. Proc. Natl. Acad. Sci. USA 83, 4655–9.

    Google Scholar 

  • HASSONT. & MOOSEKERM. S. (1994) Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J. Cell Biol. 127, 425–40.

    Google Scholar 

  • HASSONT., HEINTZELMANM. B., SANTOS-SACCHIJ., COREYD. P. & MOOSEKERM. S. (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type IB. Proc. Natl. Acad. Sci. USA 92, 9815–19.

    Google Scholar 

  • HAYDENS. M., WOLENSKIJ. S. & MOOSEKERM. S. (1990) Binding of brush border myosin I to phospholipid vesicles. J. Cell Biol. 111, 443–51.

    Google Scholar 

  • HENGSTENBERGC. & SCHWARTZK. (1994) Molecular genetics of familial hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 26, 3–10.

    Google Scholar 

  • HIGASHI-FUJIMES., ISHIKAWAR., IWASAWAH., KAGAMIO., KURIMOTOE., KOHAMAK. & HOZUMIT. (1995) The fastest actin-based motor protein form the green algae, Chara, and its distinct mode of interaction with actin. FEBS Letts 375, 151–4.

    Google Scholar 

  • HOROWITZJ. A. & HAMMERJ. A. (1990) A new Acanthamoeba myosin heavy chain. Cloning of the gene and immunological identification of the polypeptide. J. Biol. Chem. 265, 20646–52.

    Google Scholar 

  • HOSHIMARUM. & NAKANISHIS. (1987) Identification of a new type of mammalian myosin heavy chain by molecular cloning. Overlap of its mRNA with pre-protachykinin B mRNA. J. Biol. Chem. 262, 14625–32.

    Google Scholar 

  • ITOHK. & ADELSTEINR. S. (1995) Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain II-B. J. Biol. Chem. 270, 14533–40.

    Google Scholar 

  • JOHNSTONG. C., PRENDERGASTJ. A. & SINGERR. A. (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113, 539–51.

    Google Scholar 

  • JUNGG. & HAMMERJ. A.III (1994) The actin binding site in the tail domain of Dictyostelium myosin IC (myoC) resides within the glycine- and proline-rich sequence (tail homology region 2). FEBS Lett. 342, 197–202.

    Google Scholar 

  • JUNGG., KORNE. D. & HAMMERJ. A.III (1987) The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and non-myosin-like sequences. Proc. Natl. Acad. Sci. USA 84, 6720–4.

    Google Scholar 

  • JUNGG., FUKUIY., MARTINB. & HAMMERJ. A.III (1993) Sequence, expression pattern, intracellular localization, and targeted disruption of the Dictyostelium myosin ID heavy chain isoform. J. Biol. Chem. 268, 14981–90.

    Google Scholar 

  • JUNG, 4G., WU, X. & HAMMER, J. A., III (1996) Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J. Cell Biol., in press.

  • KAWAMOTOS. & ADELSTEINR. S. (1991) Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J. Cell Biol. 112, 915–24.

    Google Scholar 

  • KELLERMANK. A. & MILLERK. G. (1992) An unconventional myosin heavy chain gene from Drosophila melanogaster. J. Cell Biol. 119, 823–34.

    Google Scholar 

  • KELLEYC. A., TAKAHASHIM., YUJ. H. & ADELSTEINR. S. (1993) An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem. 268, 12848–54.

    Google Scholar 

  • KELLEY, C. A., SELLERS, J. R., ADELSTEIN, R. S. & BAINES, I. C. (1995) Xenopus nonmuscle myosin isoforms have different enzymatic activities and subcellular localizations. Mol. Biol. Cell Suppl. 6, 26a.

    Google Scholar 

  • KETCHUMA. S., STEWARTC. T., STEWARTM. & KIEHARTD. P. (1990) Complete sequence of the Drosophila nonmuscle myosin heavy-chain transcript: conserved sequences in the myosin tail and differential splicing in the 5′ untranslated sequence. Proc. Natl. Acad. Sci. USA 87, 6316–20.

    Google Scholar 

  • KIMURAM. (1983) The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • KINKEMAM. & SCHIEFELBEINJ. (1994) A myosin from a higher plant has structural similarities to class V myosins. J. Mol. Biol. 239, 591–7.

    Google Scholar 

  • KINKEMAM., WANGH. & SCHIEFELBEINJ. (1994) Molecular analysis of the myosin gene family in Arabidopsis thaliana. Plant Mol. Biol. 26, 1139–53.

    Google Scholar 

  • KNECHTD. A. & LOOMISW. F. (1988) Developmental consequences of the lack of myosin heavy chain in Dictyostelium discoideum. Dev. Biol. 128, 178–84.

    Google Scholar 

  • KNIGHTA. E. & KENDRICK-JONESJ. (1993) A myosin-like protein from a higher plant. J. Mol. Biol. 231, 148–54.

    Google Scholar 

  • KRAULISP. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Muscle Res. Cell Motil. 16, 325–32.

    Google Scholar 

  • LEINWANDL. A., FOURNIERR. E., NADAL GINARDB. & SHOWST. B. (1983) Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221, 766–9.

    Google Scholar 

  • LILLIES. H. & BROWNS. S. (1992) Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358–61.

    Google Scholar 

  • LILLIES. H. & BROWNS. S. (1994) Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–42.

    Google Scholar 

  • MANSTEIND. J. & HUNTD. M. (1995) Overexpression of myosin motor domains in Dictyostelium: screening of transformants and purification of the affinity tagged protein. J. Muscle Res. Cell Motil. 16, 325–32.

    Google Scholar 

  • MATSUDAIRAP. T. & BURGESSD. R. (1979) Identification and organization of the components in the isolated microvillus cytoskeleton. J. Cell Biol. 83, 667–73.

    Google Scholar 

  • MATSUOKAR., CHAMBERSA., KIMURAM., KANDAN., BRUNSG., YOSHIDAM. & TAKAOA. (1988) Molecular cloning and chromosomal localization of a gene coding for human cardiac myosin heavy-chain. Am. J. Med. Genet. 29, 369–76.

    Google Scholar 

  • MCLACHLANA. D. (1984) Structural implications of the myosin amino acid sequence. Annu. Rev. Biophys. Bioeng. 13, 167–89.

    Google Scholar 

  • MERCERJ. A., SEPERACKP. K., STROBELM. C., COPELANDN. G. & JENKINSN. A. (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus [published erratum appears in Nature (1991) 8, 547]. Nature 349, 709–13.

    Google Scholar 

  • MERMALLV. & MILLERK. G. (1995) The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm. J. Cell Biol. 129, 1575–88.

    Google Scholar 

  • MERMALLV., MCNALLYJ. G. & MILLERK. G. (1994) Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369, 560–2.

    Google Scholar 

  • METCALFA. B., CHELLIAHY. & HUDSPETHA. J. (1994) Molecular cloning of a myosin Iβ isozyme that may mediate adaptation by hair cells of the bullfrog's internal ear. Proc. Natl. Acad. Sci. USA 91, 11821–5.

    Google Scholar 

  • MONTELLC. & RUBING. M. (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52, 757–72.

    Google Scholar 

  • MOOSEKERM. S. & CHENEYR. E. (1995) Unconventional myosins. Ann. Rev. Cell Dev. Biol. 11, 633–75.

    Google Scholar 

  • MORGANN. S., SKOVRONSKYD. M., ARTAVANIS-TSAKOINASS. & MOOSEKERM. S. (1994) The molecular cloning and characterization of Drosophila melanogster myosin-IA and myosin-IB. J. Mol. Biol. 239, 347–56.

    Google Scholar 

  • NGUYENH. T., GUBITSR. M., WYDROR. M. & NADAL GINARDB. (1982) Sarcomeric myosin heavy chain is coded by a highly conserved multigene family. Proc. Natl. Acad. Sci. USA 79, 5230–4.

    Google Scholar 

  • NOVAKK. D., PETERSONM. D., REEDYM. C. & TITUSM. A. (1995) Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J. Cell Biol. 131, 1205–21.

    Google Scholar 

  • PASTERNAKC., SPUDICHJ. A. & ELSONE. L. (1989) Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature 341, 549–51.

    Google Scholar 

  • POLLARDT. D. & KORNE. D. (1973) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682–90.

    Google Scholar 

  • PORTERJ. A. & MONTELLC. (1993) Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J. Cell Biol. 122, 601–12.

    Google Scholar 

  • PORTERJ. A., HICKSJ. L., WILLIAMSD. S. & MONTELLC. (1992) Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells. J. Cell Biol. 116, 683–93.

    Google Scholar 

  • PORTERJ. A., YUM., DOBERSTEINS. K., POLLARDT. D. & MONTELLC. (1993) Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 262, 1038–42.

    Google Scholar 

  • POST, P. L., JENSEN, J. A., WIRTH, J. A. & MOOSEKER, M. A. (1995) Human myosin IX: a novel unconventional myosin with a chimaerin-like rho/rac GAP homology domain in its tail. Mol. Biol. Cell Suppl. 6, 144a.

    Google Scholar 

  • RAYMENTI., RYPNIEWSKIW. R., SCHMIDT-BÄSEK., SMITHR., TOMCHICKD. R., BENNINGM. M., WINKELMANND. A., WESENBERGG. & HOLDENH. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–8.

    Google Scholar 

  • RAYMENTI., HOLDENH. M., SELLERSJ. R., FANANAPAZIRL. & EPSTEINN. D. (1995) Structural interpretation of the mutations in the β-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. USA 92, 3864–8.

    Google Scholar 

  • REINHARDJ., SCHEELA. A., DIEKMANND., HALLA., RUPPERTC. & BAHLERM. (1995) A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 14, 697–704.

    Google Scholar 

  • REPEZZA, M., SELELRS, J. R., URRUTIA, R. & HAMMER, J. A., III (1994) Purification and characterization of highmolecular-weight myosin-I (HMMI), an unconventional myosin from Acanthamoeba. Mol. Biol. Cell Suppl. 5, 277a.

  • ROSENFELDS. S. & RENERB. (1994) The GPQ-rich segment of Dictyostelium myosin IB contains an actin binding site. Biochemistry 33, 2322–8.

    Google Scholar 

  • RUPPELK. M., EGELHOFFT. T. & SPUDICHJ. A. (1990) Purification of a functional recombinant myosin fragment from Dictyostelium discoideum. Ann. N.Y. Acad. Sci. 582, 147–55.

    Google Scholar 

  • RUPPELK. M., UYEDAT. Q. P. & SPUDICHJ. A. (1994) Role of highly conserved lysine 130 of myosin motor domain. In vivo and in vitro characterization of site specifically mutated myosin. J. Biol. Chem. 269, 18773–80.

    Google Scholar 

  • SELLERSJ. R. (1991) Regulation of cytoplasmic and smooth muscle myosin. Curr. Opin. Cell Biol. 3, 98–104.

    Google Scholar 

  • SELLERSJ. R. & GOODSONH. V. (1995) Motor proteins II: myosins. Protein Profile 2, 1323–423.

    Google Scholar 

  • SIMONSM., WANGM., MCBRIDEO. W., KAWAMOTOS., YAMAKAWAK., GDULAD., ADELSTEINR. S. & WEIRL. (1991) Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ. Res. 69, 530–9.

    Google Scholar 

  • SMITHC. A. & RAYMENTI. (1995) X-ray structure of the magnesium(II)-pyrophosphate complex of the truncated head of Dictyostelium discoideum myosin to 2.7 Å resolution. Biochemistry 34, 8973–81.

    Google Scholar 

  • SOLCC. F., DERFLERR. H., DUYKG. M. & COREYD. R. (1994) Molecular cloning of myosins from the bullfrog saccular macula: a candidate for the hair cell adaptation motor. Aud. Neurosci. 1, 63–75.

    Google Scholar 

  • SOUSSI-YANICOSTASN., WHALENR. G. & PETITC. (1993) Five skeletal myosin heavy chain genes are organized as a multigene complex in the human genome. Hum. Mol. Genet. 2, 563–9.

    Google Scholar 

  • SPUDICHJ. A. (1994) How molecular motors work. Nature 372, 515–18.

    Google Scholar 

  • TAKAHASHIM., KAWAMOTOS. & ADELSTFINR. S. (1992) Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J. Biol. Chem. 267, 17864–71.

    Google Scholar 

  • TITUSM. A., WESSELSD., SPUDICHJ. A. & SOLLD. (1993) The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol. Biol. Cell 4, 233–46.

    Google Scholar 

  • URRUTIAR. A., JUNGG. & HAMMERJ. A.III (1993) The Dictyostelium myosin IE heavy chain gene encodes a truncated isoform that lacks sequences corresponding to the actin binding site in the tail. Biochim. Biophys. Acta Gene Struct. Expression 1173, 225–9.

    Google Scholar 

  • UYEDAT. Q. P., RUPPELK. M. & SPUDICHJ. A. (1994) Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature 368, 567–9.

    Google Scholar 

  • UYEDA, T. Q. P., ABRAMSON, P. D. & SPUDICH, J. A. (1995) Role of myosin neck region as a lever arm to generate movement. Mol. Biol. Cell 6, 146a.

    Google Scholar 

  • VANBURENP., HARRISD. E., ALPERTN. R. & WARSHAWD. M. (1995) Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ. Res. 77, 439–44.

    Google Scholar 

  • WEILD., BLANCHARDS., KAPLANJ., GUILFORDP., GIBSONF., WALSHJ., MBURUP., VARELAA., LEVILLIERSJ., WESTONM. D., KELLEYP. M., KIMBERLINGW. J., WAGENAARM., LEVI-ACOBASF., LARGET-PIETD., MUNNICHA., STEELK. P., BROWNS. D. M. & PETITC. (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–1.

    Google Scholar 

  • WESSELSD., SOLLD. R., KNECHTD., LOOMISW. F., DELOZANNEA & SPUDICHJ. (1988) Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dev. Biol. 128, 164–77.

    Google Scholar 

  • WHITES., MARTINA. F. & PERIASAMYM. (1993) Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am. J. Physiol. Cell Physiol. 264, C1252–8.

    Google Scholar 

  • WHITTAKERM., WILSON-KUBALEKE. M., SMITHJ. E., FAUSTL., MILLIGANR. A. & SWEENEYH. L. (1995) A 35-A movement of smooth muscle myosin on ADP release. Nature 378, 748–51.

    Google Scholar 

  • WOLENSKIJ. S., CHENEYR. E., FORSCHERP. & MOOSEKERM. S. (1993a) In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity. J. Exp. Zool. 267, 33–9.

    Google Scholar 

  • WOLENSKIJ. S., HAYDENS. M., FORSCHERP. & MOOSEKERM. S. (1993b) Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry. J. Cell Biol. 122, 613–21.

    Google Scholar 

  • XIEX., HARRISOND. H., SCHLICHTINGI., SWEETR. M., KALABOKISV. N., SZENT-GYÖRGYIA. G. & COHENC. (1994) Structure of the regulatory domain of scallop myosin at 2.8 Å resolution. Nature 368, 306–12.

    Google Scholar 

  • YAMAMOTOK., KIKUYAMAM., SUTOH-YAMAMOTON., KAMITSUBOE. & KATAYAMAE. (1995) Myosin from alga Chara: unique structure revealed by electron microscopy. J. Mol. Biol. 254, 109–12.

    Google Scholar 

  • YOONS. J., SEILERS. H., KUCHERLAPATIR. & LEINWANDL. (1992) Organization of the human skeletal myosin heavy chain gene cluster. Proc. Natl. Acad. Sci. USA 89, 12078–82.

    Google Scholar 

  • YOUNGP. E., RICHMANA. M., KETCHUMA. S. & KIEHARTD. P. (1993) Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellers, J.R., Goodson, H.V. & Wang, F. A myosin family reunion. J Muscle Res Cell Motil 17, 7–22 (1996). https://doi.org/10.1007/BF00140320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140320

Keywords

Navigation