Skip to main content
Log in

Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This paper summarizes some recent theories about the evolution of transposable genetic elements in outbreeding, sexual eukaryotic organisms. The evolutionary possibilities available to self-replicating transposable elements are shown to vary depending on the reproductive biology of the host genome. This effect can be used to explain, in part, the differences in abundance of transposable elements between prokaryotes and eukaryotes. It is argued that the pattern of sexual outbreeding seen in mammals and plants is especially favorable to the spread of transposons. Moreover, because transposon spread is facilitated by zygote formation, the evolutionary origin of sexual conjugation may have been due to selection on transposon-encoded genes. Finally, evidence is also presented that introns could have originated as transposable genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belfort, M., 1991. Self-splicing introns in prokaryotes: migrant fossils? Cell 64: 9–11.

    Google Scholar 

  • Bell-Pedersen, D., S. Quirk, J. Clyman & M. Belfort, 1990. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res. 18: 3763–3770.

    Google Scholar 

  • Biel, S. W. & D. L. Hartl, 1983. Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. Genetics 103: 581–592.

    Google Scholar 

  • Cavalier-Smith, T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA c-value paradox. J. Cell Sci. 34: 247–278.

    Google Scholar 

  • Cavalier-Smith, T., 1980. How selfish is DNA? Nature 285: 617–618.

    Google Scholar 

  • Cavalier-Smith, T., 1985. Nature 315: 283–284.

    Google Scholar 

  • Cavalier-Smith, T., 1991. Intron phylogeny: a new hypothesis. Trends in Genet. 7: 145–148.

    Google Scholar 

  • Cech, T., 1986. The generality of self-splicing RNA: Relationship to nuclear mRNA splicing. Cell 44: 207–210.

    Google Scholar 

  • Chao, L. & S. McBroom, 1985. Evolution of transposable elements: an IS10 insertion increases fitness in Escherichia coli. Mol. Biol. Evol. 2: 359–369.

    Google Scholar 

  • Charlesworth, B., 1987. The population biology of transposable elements. Trends Ecol. Evol. 2: 21–23.

    Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1986. The evolution of self-regulated transposition of transposable elements. Genetics 112: 359–383.

    Google Scholar 

  • Condit, R., F. M. Stewart & B. R. Levin, 1988. The population biology of bacterial transposons: a priori conditions for maintenance as parasitic DNA. Amer. Nat. 132: 129–147.

    Google Scholar 

  • Doolittle, W. F., 1978. Genes in pieces: were they ever together? Nature 272: 581–582.

    Google Scholar 

  • Doolittle, W. F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Google Scholar 

  • Dover, G., 1980. Ingnorant DNA? Nature 285: 618–620.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in Mobile DNA, edited by D. E. Berg and M. Howe. A.S.M. Publications, Washington D.C.

    Google Scholar 

  • Gawron-Burke, C. & D. B. Clewell, 1982. A transposon in Streptomyces faecalis with fertility properties. Nature 300: 1–3.

    Google Scholar 

  • Gilbert, W., 1979. Introns and exons: playgrounds of evolution. ICN-UCLA Symp. Mol. Cell. Biol. 14: 1–12.

    Google Scholar 

  • Good, A. G., G. Meister, H. Brock, T. A. Grigliatti & D. Hickey, 1989. Rapid spread of transposable P elements in experimental populations of Drosophila melanogaster. Genetics 122: 387–396.

    Google Scholar 

  • Hartl, D. L., D. E. Dykhuizen, R. D. Miller, L. Green & J.de Framond, 1983. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35: 503–510.

    Google Scholar 

  • Hickey, D. A., 1982. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101: 519–531.

    Google Scholar 

  • Hickey, D. A. & B. F. Benkel, 1985. Splicing and the evolution of introns. Nature 316: 582.

    Google Scholar 

  • Hickey, D. A. & B. F. Benkel, 1986. Introns as relict retrotransposons: implications for the evolutionary origin of eukaryotic mRNA splicing mechanisms. J. Theoret. Biol. 121: 283–291.

    Google Scholar 

  • Hickey, D.A., A. Loverre & G. C. Carmody, 1986. Is the segregation distortion phenomenon in Drosophila due to active recurrent genetic transposition? Genetics 114: 665–668.

    Google Scholar 

  • Hickey, D. A., B. F. Benkel & S. M. Abukashawa, 1989. A general model for the evolution of nuclear pre-mRNA introns. J. Theoret. Biol. 137: 41–53.

    Google Scholar 

  • Hickey, D. A. & M. R. Rose, 1988. The role of gene transfer in the evolution of eukaryotic sex, pp. 161–175 in The Evolution of Sex, edited by R. E. Michod and B. R. Levin. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hurst, L. D., 1991. Sex, slime and selfish genes. Nature 354: 23–24.

    Google Scholar 

  • Kidwell, M., 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 80: 1655–1659.

    Google Scholar 

  • Kiyasu, P. K. & M. G. Kidwell, 1984. Hybrid dysgenesis in Drosophila melanogaster: the evolution of mixed P and M populations maintained at high temperature. Genet. Res. 44: 251–259.

    Google Scholar 

  • Kleckner, N., 1981. Transposable elements in prokaryotes. Ann. Rev. Genet. 15: 341–404.

    Google Scholar 

  • Lambowitz, A. M., 1989. Infectious introns. Cell 56: 323–326.

    Google Scholar 

  • Langley, C. H., J. F. Y. Brookfield & N. Kaplan, 1983. Transposable elements in Mendelian populations. I. A. theory Genetics 104: 457–471.

    Google Scholar 

  • McClintock, B., 1951. Chromosome organization and genic expression. Cold Spr. Harb. Symp. Quant. Biol. 16: 13–47.

    Google Scholar 

  • McClure, M. A., 1991. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol. Biol. Evol. 8: 835–856.

    Google Scholar 

  • Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    Google Scholar 

  • Nanjndiah, V., 1985. Transposable element copy number and stable polymorphisms. J. Genet. 64: 127–134.

    Google Scholar 

  • Orgel, L. E. & F. H. C. Crick, 1986. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Google Scholar 

  • Rose, M. R., 1983. The contagion mechanism for the origin of sex. J. Theoret. Biol. 101: 137–146.

    Google Scholar 

  • Temin, H. M., 1985. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. Mol. Biol. Evol. 2: 455–468.

    Google Scholar 

  • Willets, N. & R. Skurray, 1980. The conjugation system of F-like plasmids. Ann. Rev. Genet. 14: 41–76.

    Google Scholar 

  • Woodson, S. A. & T. R. Cech, 1989. Reverse self-splicing of the Tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell 57: 335–345.

    Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1988. Similarity of reverse-transcriptase-like sequences of viruses, transposable elements and mitochondrial introns. Mol. Biol. Evol. 5: 675–690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickey, D.A. Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes. Genetica 86, 269–274 (1992). https://doi.org/10.1007/BF00133725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133725

Key words

Navigation