Skip to main content
Log in

Population genetics of transposable DNA elements

A Drosophila point of view

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguadé, M., N. Miyashita & C. H. Langley, 1989. Restrictionmap variation at the zest-tko region in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 123–130.

    Google Scholar 

  • Ajióka, J. W. & W. F. Eanes, 1989. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.

    Google Scholar 

  • Ajioka, J. W. & D. L. Hartl, 1989. Population dynamics of transposable elements, pp. 939–958 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology Washington D.C.

    Google Scholar 

  • Ananiev, E. V., V. E. Barsky, Yu V. Ilyin & M. V. Ryzic, 1984. The arrangement of transposable elements in the polytene chromosomes of Drosophila melanogaster. Chromosoma 90: 366–377.

    Google Scholar 

  • Ananiev, E. V., V. A. Gvozdev, Y. V. Ilyin, N. A. Tchurikov & G. P. Georgiev, 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma 70: 1–17.

    Google Scholar 

  • Anderson, W. W., 1969. Genetics of natural populations XLI. The selection coefficients of heterozygotes for lethal chromosomes in Drosophila on different genetic backgrounds. Genetics 62: 827–836.

    Google Scholar 

  • Aquadro, C. F., S. F. Deese, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.

    Google Scholar 

  • Aquadro, C. F., H. Tachida, C. H. Langley, K. Harada & T. Mukai, 1990. Increased variation in ADH enzyme activity in Drosophila mutation-accumulation experiment is not due to transposable elements at the Adh structural gene. Genetics 126: 915–919.

    Google Scholar 

  • Arnault, C., A. Heizmann, C. Loevenbruck & C. Biémont, 1991. Environmental stresses and mobilization of transposable elements in inbred lines of Drosophila melanogaster. Mutation Res. 248: 51–60.

    Google Scholar 

  • Baker, R. J. & H. A. Wichman, 1990. Retrotransposon MYS is concentrated on the sex chromosomes: implications for copy number containment. Evolution 44: 2083–2088.

    Google Scholar 

  • Barrett, S. C. H. & D. Charlesworth, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524.

    Google Scholar 

  • Belyaeva, E. Sp., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.

    Google Scholar 

  • Biémont, C., 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Google Scholar 

  • Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.

    Google Scholar 

  • Biémont, C., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in a Drosophila melanogaster inbred line. Nature 329: 742–744.

    Google Scholar 

  • Biémont, C., A. Aouar, C. Gautier & C. Terzian, 1989. Hybrid viability is correlated with the I and P mobile element copy numbers of the maternal inbred line in Drosophila melanogaster. Heredity 62: 301–305.

    Google Scholar 

  • Biémont, C., C. Arnault, A. Heizmann & S. Ronsseray, 1990a. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.

    Google Scholar 

  • Biémont, C. & C. Gautier, 1987. Mdg-1 mobile element heterozygosity in Drosophila melanogaster. Heredity 58: 167–172.

    Google Scholar 

  • Biémont, C. & C. Gautier, 1988. Localisation polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60: 335–346.

    Google Scholar 

  • Biémont, C. & C. Gautier, 1989. Interactions between transposable elements for insertion in the Drosophila melanogaster genome. Heredity 63: 125–133.

    Google Scholar 

  • Biémont, C., C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.

    Google Scholar 

  • Biémont, C., S. Ronsseray, D. Anxolabéhère, H. Izaabel & C. Gautier, 1990b. Localisation of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster. Genet. Res. 56: 3–14.

    Google Scholar 

  • Biémont, C. & C. Terzian, 1986. Regulation in the number of mdg-1 mobile elements in inbred Drosophila melanogaster. Genetica 71: 161–165.

    Google Scholar 

  • Boeke, J. D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Boeke, J., D. Garfinkel, C. Styles & G. Fink, 1985. Ty elements transpose through an RNA indermediate. Cell 40: 491–500.

    Google Scholar 

  • Bownes, M., 1990. Preferential insertion of P elements into genes expressed in the germ line of Drosophila melanogaster. Mol. Gen. Genet. 222: 457–460.

    Google Scholar 

  • Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.

    Google Scholar 

  • Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro, Academic Press, N.Y.

    Google Scholar 

  • Brookfield, J. F. Y., 1986. The population biology of transposable elements. Phil. Trans. R. Soc. Lond. 312: 217–226.

    Google Scholar 

  • Brookfield, J. F. Y., 1991. Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128: 471–486.

    Google Scholar 

  • Bryant, E. H., S. A. McCommas & L. M. Combs, 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211.

    Google Scholar 

  • Bryant, E. H., L. M. Meffert & S. A. McCommas, 1990. Fitness rebound in serially bottleneck populations of the house fly. The Amer. Nat. 136: 542–549.

    Google Scholar 

  • Charlesworth, B., 1985. The population genetics of transposable elements, pp. 213–232 in Population genetics and molecular evolution, edited by T. Ohta & K. Aoki. Springer-Verlag, Berlin.

    Google Scholar 

  • Charlesworth, B., 1988. The maintenance of transposable elements in natural populations, pp. 189–212 in Plant Transposable Elements, edited by O. Nelson. Plenum Press, N.Y., London.

    Google Scholar 

  • Charlesworth, B., 1991. Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet. Res. 57: 127–134.

    Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population geneties of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of 10 transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet. Res. 54: 113–125.

    Google Scholar 

  • Cooley, L., R. Kelley & A. Spradling, 1988. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239: 1121–1128.

    Google Scholar 

  • Crow, J. F. & M. J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson & J. N. Thompson Jr. Thompson. Academic Press, London.

    Google Scholar 

  • Csink, A. K. & J. F. McDonald, 1989. Copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.

    Google Scholar 

  • Curio, M. J. & D. J. Garfinkel, 1991. Single-step selection for Tyl element retrotransposition. Proc. Natl. Acad. Sci. 88: 936–940.

    Google Scholar 

  • Davis, P. S., M. W. Shen & B. H. Judd, 1987. Assymmetrical pairing of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci. 84: 174–178.

    Google Scholar 

  • Dooner, H. K. & A. Belachew, 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129: 855–862.

    Google Scholar 

  • Eanes, W. F., C. Wesley, J. Hey, D. Houle & J. Ajioka, 1988. The fitness consequences of P element insertion in Drosophila melanogaster. Genet. Res. 52: 17–26.

    Google Scholar 

  • Eanes, W. F., J. W. Ajioka, J. Hey & C. Wesley, 1989. Restriction-map variation associated with the G6PD polymorphism in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 384–397.

    Google Scholar 

  • Echalier, G., 1989. Drosophila retrotransposons; interactions with genome. Adv. Virus Res. 36: 33–105.

    Google Scholar 

  • Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331: 368–370.

    Google Scholar 

  • Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston & J. Sved, 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–525.

    Google Scholar 

  • Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends in Genet. 5: 103–107.

    Google Scholar 

  • Fitch, W. M. & W. R. Atchley, 1985. Evolution of inbred strains of mice appears rapid. Science 228: 1169–1175.

    Google Scholar 

  • Frankham, R., A. Torkamanzehi & C. Moran, 1991. P element transposon-induced quantitative genetic variation for inebriation time in Drosophila melanogaster. Theor. Apll. Genet. 81: 317–320.

    Google Scholar 

  • Frei, B., C. W. Stuber & M. M. Goodman, 1986. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop. Science 26: 37–42.

    Google Scholar 

  • Freund, R. & M. Meselson, 1984. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. 81: 4462–4464.

    Google Scholar 

  • Georgiev, P. G., S. L. Kiselev, O. B. Simonova & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the stalker mobile genetic element. EMBO J. 9: 2037–2044.

    Google Scholar 

  • Gerasimova, T. I., L. V. Matyunina, Y. V. Ilyin & G. P. Georgiev, 1984a. Simultaneous transposition of different mobile elements. Relation to multiple mutagenesis in Drosophila melanogaster. Mol. Gen. Genet. 194: 517–522.

    Google Scholar 

  • Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984b. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.

    Google Scholar 

  • Goldberg, M. L., J.-Y. Sheen, W. J. Gehring & M. M. Green, 1983. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. 80: 5017–5021.

    Google Scholar 

  • Golding, G. B., C. F. Aquadro & C. H. Langley, 1986. Sequence evolution within populations under multiple types of mutation. Proc. Natl. Acad. Sci. 83: 427–431.

    Google Scholar 

  • Gridley, T., P. Soriano & R. Jaenisch, 1987. Insertional mutagenesis in mice. Trends in Genet. 3: 162–166.

    Google Scholar 

  • Gvozdev, V. A., 1981. The nature and functions of intercalary heterochromatin in Drosophila melanogaster. In Molecular basis of genetic processes. Proc. XIV Int. Congr. Genet. 3: 257–271.

  • Gvozdev, V. A., E. S. Belyaeva, Y. V. Ilyin, I. S. Amosova & L. Z. Kaidanov, 1981. Selection and transposition of mobile dispersed genes in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 45: 673–685.

    Google Scholar 

  • Harada, K., A. Koga, S. Kusakabe & T. Mukai, 1988. A new family of mobile dispersed middle repetitive elements in Drosophila melanogaster. Proc. Japan Acad. 64: 193–196.

    Google Scholar 

  • Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. 87: 3248–3252.

    Google Scholar 

  • Harden, N. & M. Ashburner, 1990. Characterization of the FBNOF transposable element of Drosophila melanogaster. Genetics 126: 387–400.

    Google Scholar 

  • Hey, J., 1989. The transposable portion of the genome of Drosophila algonquin is very different from that in Drosophila melanogaster. Mol. Biol. Evol. 6: 66–79.

    Google Scholar 

  • Hudson, A., R. Carpenter & E. S. Coen, 1987. De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207: 54–59.

    Google Scholar 

  • Ikenaga, H. & K. Saigo, 1982. Insertion of movable genetic element, 297, into the T-A-T-A box for the H3 histone gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. 79: 4143–4147.

    Google Scholar 

  • Inouye, S., S. Yuki & K. Saigo, 1984. Sequence-specific insertion of the Drosophila transposable genetic element 17.6. Nature 310: 332–333.

    Google Scholar 

  • Ising, B. & K. Block, 1981. Derivation-dependent distribution of insertion sites for a Drosophila transposon. Cold Spring Harb. Symp. Quant. Biol. 45: 527–544.

    Google Scholar 

  • Jones, M. A., S. I. Fuerstenberg & C. A. Hennelly, 1990. Nonrandom chromosomal distribution of Ac-like sequences in inbred maize. Genet. Res. 55: 71–80.

    Google Scholar 

  • Junakovic, N., R. Cavena & P. Ballario, 1984. Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster. Chromosoma 90: 378–382.

    Google Scholar 

  • Junakovic, N., C.Di Franco, P. Barsanti & G. Palumbo, 1987. Transposition of copia-like nomadic elements can be induced by heat-shock. J. Mol. Evol. 24: 89–93.

    Google Scholar 

  • Junakovic, N., C.Di Franco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97: 212–218.

    Google Scholar 

  • Kaplan, N. L. & J. F. Y. Brookfield, 1983. Transposable elements in mendelian populations. III. Statistical results. Genetics 104: 485–495.

    Google Scholar 

  • Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Google Scholar 

  • Kim, A. I. & E. S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.

    Google Scholar 

  • Langley, C. H. & C. F. Aquadro, 1987. Restriction map variation in natural populations of Drosophila melanogaster: white locus region. Mol. Biol. Evol. 4: 651–663.

    Google Scholar 

  • Langley, C. H., J. F. Y. Brookfield & N. L. Kaplan, 1983. Transposable elements in mendelian populations. I. A theory. Genetics 104: 457–472.

    Google Scholar 

  • Langley, C. H., E. A. Montgomery, R. Hudson, N. L. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–236.

    Google Scholar 

  • Langley, C. H., E. A. Montgomery & W. F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. 79: 5631–5635.

    Google Scholar 

  • Laurie-Ahlberg, C. C. & L. F. Stam, 1987. Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics 115: 129–140.

    Google Scholar 

  • Lee, M. & R. L. Phillips, 1988. The chromosomal basis of somaclonal variation. Ann. Rev. Plant Physiol. 39: 413–437.

    Google Scholar 

  • Leigh-Brown, A. J. & J. E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.

    Google Scholar 

  • Leigh-Brown, A.J., S. J. Ross, L. S. Alphey, A. J. Flavell & T. Gerasimova, 1989. Instability in the ctMR2 strain of Drosophila melanogaster: role of P element functions and structure of revertants. Mol. Gen. Genet. 218: 208–213.

    Google Scholar 

  • Lewontin, R. C., 1974. The genetic basis of evolutionary changes. Columbia University Press, N.Y.

    Google Scholar 

  • Lewontin, R. C., 1985. Population genetics. Ann. Rev. Genet. 19: 81–102.

    Google Scholar 

  • Lillis, M. & M. Freeling, 1986. Mu transposons in maize. Trends in Genet. 2: 183–188.

    Google Scholar 

  • Lim, J. K., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.

    Google Scholar 

  • Lim, J. K., M. J. Simmons, J. D. Raymond, N. M. Cox, R. F. Doll & T. P. Culbert, 1983. Homologue destabilisation by a putative transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. 80: 6624–6627.

    Google Scholar 

  • Mackay, T. F. C., 1985. Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111: 351–374.

    Google Scholar 

  • Mackay, T. F. C., 1987. Transposable element-induced polygenic mutations in Drosophila melanogaster. Genet. Res. 49: 225–233.

    Google Scholar 

  • Mackay, T. F. C., 1989. Transposable elements and fitness in Drosophila melanogaster. Genome 31: 284–295.

    Google Scholar 

  • McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Google Scholar 

  • McEntee, K. & V. A. Bradshaw, 1988. Effects of DNA damage on transcription and transposition of Ty retrotransposons of yeast, pp. 245–254 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald & I. B. Weinstein, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mével-Ninio, M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovoD dominant femalesterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.

    Google Scholar 

  • Montgomery, E. A., B. Charlesworth & C. H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Google Scholar 

  • Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations: II Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    Google Scholar 

  • Moran, C. & A. Torkamanzehi, 1990. P elements and quantitative variation in Drosophila, pp. 99–117 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer & R. J. MacIntyre. Plenum, N.Y.

    Google Scholar 

  • Mukai, T. & C. C. Cockerham, 1977. Spontaneous mutation rates of isozyme genes in Drosophila melanogaster. Proc. Natl. Acad. Sci. 74: 2514–2517.

    Google Scholar 

  • O'Hare, K. & G. M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Google Scholar 

  • Pardue, M. L., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.

    Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.

    Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, L. E. Ilyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.

    Google Scholar 

  • Pélisson, A. & J.-C. Brégliano, 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306–313.

    Google Scholar 

  • Pierce, D. A. & J. C. Lucchesi, 1981. Analysis of a dispersed repetitive DNA sequence in isogenic lines of Drosophila melanogaster. Chromosoma 82: 471–492.

    Google Scholar 

  • Potter, S. S., W. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia, and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Google Scholar 

  • Preston, C. R. & W. R. Engels, 1984. Movements of P elements within a P strain. Droso. Infor. Serv. 60: 169–170.

    Google Scholar 

  • Ronsseray, S. & D. Anxolabéhère, 1986. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94: 433–440.

    Google Scholar 

  • Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1989. Distribution of P and I mobile elements copy number in Drosophila melanogaster populations. Chromosoma 98: 207–214.

    Google Scholar 

  • Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1991. The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129: 501–512.

    Google Scholar 

  • Rose, M. R. & W. F. Doolittle, 1983. Molecular biological mechanisms of speciation. Science 200: 157–161.

    Google Scholar 

  • Rubin, G., M. G. Kidwell & P. M. Bingham, 1982. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29: 987–994.

    Google Scholar 

  • Salinas, J., M. Zerial, J. Filipski, M. Crepin & G. Bernardi, 1987. Nonrandom distribution of MMTV proviral sequences in the mouse genome. Nucleic Acid Res. 15: 3009–3022.

    Google Scholar 

  • Scheinker, V. S., E. R. Lozovskaya, J. G. Bishop, V. G. Corces & M. B. Evgen'ev, 1990. A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. 87: 9615–9619.

    Google Scholar 

  • Shevelyov, Y. Y., M. D. Balakireva & V. A. Gvozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98: 117–122.

    Google Scholar 

  • Shih, C.-C., J. P. Stoye & J. M. Coffin, 1988. Highly preferred targets for retrovirus integrations. Cell 53: 531–537.

    Google Scholar 

  • Shrimpton, A. E., T. F. C. Mackay & A. J. Leigh Brown, 1990. Transposable element-induced response to artificial selection in Drosophila melanogaster: molecular analysis of selection lines. Genetics 125: 803–811.

    Google Scholar 

  • Simmons, M. J. & J. F. Crow, 1977. Mutation affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49–78.

    Google Scholar 

  • Simmons, M. J., J. D. Raymond, T. R. Laverty, R. F. Doll, N. C. Raymond, G. J. Kocur & E. A. Drier, 1985. Chromosomal effects on mutability in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 111: 869–884.

    Google Scholar 

  • Spradling, A. C. & G. M. Rubin, 1983. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34: 47–57.

    Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acid Res. 13: 4401–4410.

    Google Scholar 

  • Strauss, S. H., 1986. Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata. Genetics 113: 115–134.

    Google Scholar 

  • Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 429–439.

    Google Scholar 

  • Suh, D. S. & T. Mukai, 1990. The genetic structure of natural populations of Drosophila melanogaster. XXIV. Effects of hybrid dysgenesis on the components of genetic variance of viability. Genetics 127: 545–552.

    Google Scholar 

  • Sved, J. A., L. M. Blackman, A. S. Gilchrist & W. R. Engels, 1991. High levels of recombination induced by homologous P elements in Drosophila melanogaster. Mol. Gen. Genet. 225: 443–447.

    Google Scholar 

  • Tanda, S., A. E. Shrimpton, C. Ling-Ling, H. Itayama, H. Matsubayashi, K. Saigo, Y. N. Tobari & C. H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element tom in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.

    Google Scholar 

  • Taruscio, D. & L. Manuelidis, 1991. Integration site preferences of endogenous retroviruses. Chromosoma 101: 141–156.

    Google Scholar 

  • Terzian, C. & C. Biémont, 1988. The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster. Genetica 76: 53–63.

    Google Scholar 

  • Tobari, I. & M. Murata, 1970. Effect of X-rays on genetic loads in a cage population of Drosophila melanogaster. Genetics 65: 107–119.

    Google Scholar 

  • Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophila suppressor of sable locus occur in DNase I hypersensitive subregions of 5′-transcribed nontranslated sequences. Genetics 126: 1071–1082.

    Google Scholar 

  • Whiting, J. H. Jr, J. L. Farmer & D. E. Jeffery, 1987. Improved in situ hybridization and detection of biotin-labeled D. melanogaster DNA probes hybridized to D. virilis salivary gland chromosomes. Droso. Infor. Serv. 66: 170–171.

    Google Scholar 

  • Wolf, K. H., P. M. Sharp & W. H. Li, 1989. Mutation rates differ among regions of the mammalian genome. Nature 337: 283–285.

    Google Scholar 

  • Woodruff, R. C., J. L. Blount & J. N. Jr. Thompson, 1987. Hybrid dysgenesis in Drosophila melanogaster is not a general release mechanism for DNA transpositions. Science 237: 1206–1207.

    Google Scholar 

  • Xu, H. & J. D. Boeke, 1991. Inhibition of Ty 1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.

    Google Scholar 

  • Yamaguchi, O., T. Yamazaki, K. Saigo, T. Mukai & A. Robertson, 1987. Distribution of three transposable elements, P, 297, and copia in natural populations of Drosophila melanogaster. Jpn. J. Genet. 62: 205–216.

    Google Scholar 

  • Young, M. V. & H. E. Schwartz, 1981. Nomadic gene families in Drosophila. Cold Spring Harb. Symp. quant. Biol. 45: 629–640.

    Google Scholar 

  • Yukuhiro, K., K. Harada & T. Mukai, 1985. Viability mutations induced by the P elements in Drosophila melanogaster. Jpn. J. Genet. 60: 531–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biémont, C. Population genetics of transposable DNA elements. Genetica 86, 67–84 (1992). https://doi.org/10.1007/BF00133712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133712

Key words

Navigation