Skip to main content
Log in

Evolution of the transposable element Uhu in five species of Hawaiian Drosophila

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The complete DNA sequence of three independent isolates of Uhu, a member of the Tc1-like class of transposable elements from D. heteroneura (Uhu-1, Uhu-3, and Uhu-4), has been determined. These isolates have between 95 and 96.4% nucleotide sequence identity indicating that Uhu is well conserved within this species. A comparison of the DNA sequences of Uhu and the D. melanogaster Hb1 transposable element shows that the nucleotide substitution rate for Uhu is comparable to the synonymous rate for the Adh gene in these species. Uhu has been identified in four other species of endemic Hawaiian Drosophila, D. silvestris, D. differens, D. planitibia and D. picticornis, and nine Uhu elements were isolated from genomic libraries of these four species. A 444 base pair region from within the coding region of the Uhu element, with well conserved ends, was amplified by the polymerase chain reaction and used for sequence comparison of elements from different species. The analysis of the sequence similarities between the elements within and between the species shows a grouping of the two pairs of most closely related species (D. heteroneura and D. silvestris, and D. differens and D. planitibia), but shows a much larger variation within the most recently diverged species (D. heteroneura and D. silvestris) than expected. There are extensive nucleotide substitutions and deletions in the Uhu elements from D. picticornis showing that they are degenerating and being lost in this species. These observations indicate that the Uhu element has been transmitted vertically and that transposition may have been activated at the time of formation of each species as it colonized the newly formed islands of the Hawaiian archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biémont, C. & C. Gautier, 1988. Localisation poymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60: 335–346.

    Google Scholar 

  • Biémont, C., S. Ronsseray, D. Anxolabéhère, H. Izaabel & C. Gauthier, 1990a. Localization of P elements, copy nymber regulation, and cytotype determination in Drosophila melanogaster. Genet. Res. Camb. 56: 3–14.

    Google Scholar 

  • Biémont, C., C. Arnault, A. Heizmann & S. Ronsseray, 1990b. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.

    Google Scholar 

  • Bingham, P. M., M. G. Kidwell & G. M. Rubin, 1982. The molecular basis of P-M dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 29: 995–1004.

    Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp 485–502 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Bishop, J. G. B. III & J. A. Hunt, 1988. DNA divergence in and around the alcohol dehydrogenase locus in five closely related species of Hawaiian Drosophila Mol. Biol. Evol. 5: 415–531.

    Google Scholar 

  • Breathnach, R. & P. Chambon, 1981. Organization and expression of eukaryotic split genes coding for proteins. Ann. Rev. Biochem. 50: 349–383.

    Google Scholar 

  • Brezinsky, L., G. V. L. Wang, T. Humphreys & J. Hunt, 1990. The transposable element Uhu from the Hawaiian Drosophila-A member of the widely dispersed class of Tc1-like transposons. Nucl. Acids Res. 8: 2053–2059.

    Google Scholar 

  • Brierly, H. L. & S. S. Potter, 1985. Distinct characteristics of loop sequences of two Drosophila foldback transposable elements. Nucl. Acids Res. 13: 485–500.

    Google Scholar 

  • Brookfield, J. E. Y., 1986. A model for DNA sequence evolution within transposable element families. Genetics 112: 393–407.

    Google Scholar 

  • Cabot, E. L. & A. T. Beckenbach, 1989. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Computer Applications in the Biosciences 5: 233–234.

    Google Scholar 

  • Carson, H. L. & A. R. Templeton, 1984. Genetic revolutions in relation to speciation phenomena: The founding of new populations. Ann. Rev. Ecol. Syst. 15: 97–131.

    Google Scholar 

  • Carson, H. L. & J. S. Yoon, 1982. Genetics and evolution of Hawaiian Drosophila, pp. 297–344 in The Genetics and Biology of Drosophila, Vol. 3b, edited by M. Ashburner, H. L. Carson and J. N. Thompson Jr. Academic Press, New York.

    Google Scholar 

  • Carson, H. L. & R. G. Wisotzkey, 1989. Increase in genetic variance following a population bottleneck. Am. Natur. 134: 668–673.

    Google Scholar 

  • Charlesworth, B., 1986. Genetic divergence between transposable elements. Genet. Res. Camb. 48: 111–118.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Google Scholar 

  • Craddock, E. M. & W. E. Johnson, 1979. Genetic variation in Hawaiian Drosophila. Chromosomal and allozyme diversity in D. silvestris and its homosequential species. Evolution 33: 137–155.

    Google Scholar 

  • Dale, R. M. K., B. A. McClure & J. P. Houchins, 1985. A new procedure for producing a sequential series of overlapping clones for use in DNA sequencing. Plasmid 13: 31–40.

    Google Scholar 

  • Daniels, S. B., K. R. Peterson, L. D. Strausbaugh, M. G. Kidwell & A. R. Chovnick, 1990. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124: 339–355.

    Google Scholar 

  • DeSalle, R. & V. Giddings, 1986. Discordance of nuclear and mitochondrial DNA phylogenies in Hawaiian Drosophila. Proc. Natl. Acad. Sci. USA 83: 6902–6906.

    Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Felsenstein, J., 1984. Distance methods for inferring phylogenies: a justification Evolution 38: 16–24.

    Google Scholar 

  • Felsenstein, J., 1988. Phylogenies from molecular sequences: Inferences and reliability. Ann. Rev. Genet. 22: 521–565.

    Google Scholar 

  • Hagenbüchle, O., R. Bovey & R. A. Young, 1980. Tissue-specific expression of Mouse alpha-amylase genes: Nucleotide sequence of isozyme mRNAs from pancreas and salivary gland. Cell 21: 179–187.

    Google Scholar 

  • Harris, L. J., D. L. Baillie & A. M. Rose, 1988. Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucl. Acids Res. 16: 5991–5999.

    Google Scholar 

  • Harris, L. J., S. Prasad & A. M. Rose, 1990. Isolation and sequence analysis of C. briggsae repetitive elements related to the C. elegans transposon Tc1. J. Mol. Evol. 30: 359–369.

    Google Scholar 

  • Hudson, R. R. & N. L. Kaplan, 1986. On the divergence of members of a transposable element.

  • Hunt, J. A. & H. L. Carson, 1983. Evolutionary relationship of four species of Hawaiian Drosophila as measured by DNA reassociation. Genetics 104: 353–364.

    Google Scholar 

  • Hunt, J. A., J. G. Bishop III & H. L. Carson, 1984. Chromosomal mapping of a middle-repetitive DNA sequence in a cluster of five species of Hawaiian Drosophila. Proc. Natl. Acad. Sci. USA 81: 7146–7150.

    Google Scholar 

  • Kaneshiro, K. Y., 1976. Ethological isolation and phylogeny of the planitibia subgroup of Hawaiian Drosophila. Evolution 30: 740–745.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Google Scholar 

  • Li, W.-H., C.-I. Wu & C.-C. Luo, 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2: 150–174.

    Google Scholar 

  • Liao, L. W., B. Rosenzweig & D. Hirsh, 1983. Analysis of a transposable element in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 80: 3585–3589.

    Google Scholar 

  • Martinez-Cruzado, J. C., 1990. Evolution of the autosomal cluster in Drosophila. IV. The Hawaiian Drosophila: Rapid protein evolution and constancy in the rate of DNA divergence. J. Mol. Evol. 31: 402–423.

    Google Scholar 

  • Maruyama, K. & D. L. Hartl, 1991a. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319–329.

    Google Scholar 

  • Maruyama, K. & D. L. Hartl, 1991b. Interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J. Mol. Evol. (in press).

  • Mayr, E., 1963. Animal species and evolution. Harvard University Press.

  • McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary biology of transient unstable populations, edited by A. Fontdevilla. Springer-Verlag, New York.

    Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. Bioscience 40: 183–191.

    Google Scholar 

  • McDonald, J. F., D. J. Strand, M. R. Brown, S. M. Paskewitz, A. R. Csink & S. H. Voss, 1988. Evidence of Host-mediated regulation of retroviral element expression at the post-transcriptional level, pp. 219–314 in Eukaryotic transposable elements as mutagenic agents, edited by M. E. Lambert, J. F. McDonald, and I. B. Weinstein. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • McDonald, J. F., D. J. Strand, M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: Evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, edited by R. Rault and E. Rault. Allan R. Liss, New York.

    Google Scholar 

  • McDougall, I., 1969. Potassium-argon ages from lavas of the Hawaiian Islands. Bull. Geol. Soc. Am. 80: 2597–2600.

    Google Scholar 

  • Mead, D. A. & B. Kemper, 1986. Chimeric single stranded DNA phage-plasmid cloning vectors, pp. 85–102 in Vectors. A survey of molecular cloning vectors and their uses, edited by R. L. Rodriguez and D. T. Denhardt. Butterworths Publishers. Boston, MA.

    Google Scholar 

  • Nakajima, N., M. Horikoshi & R. Roeder, 1988. Factors involved in specific transcription by mammalian RNA polymerase II: Purification, genetic specificity, and TATA boxpromoter interactions of TFIID. Mol. Cell. Biol. 8: 4028–4040.

    Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty, 1987. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Nocera, P. P. D. & Y. Sakaki, 1990. LINEs: a super family of retrotransposable ubiquitous DNA elements. Trends in Genetics 6: 29–30.

    Google Scholar 

  • Ohta, T., 1986. Population genetics of an expanding family of mobile genetic elements. Genetics 113: 145–159.

    Google Scholar 

  • Prakash, S., 1972. Origin and reproductive isolation in the absence of apparent genic differentiation in a geographic isolate of Drosophila pseudoobscura. Genetics 72: 143–155.

    Google Scholar 

  • Proudfoot, N. J. & G. G. Brownlee, 1976. 3′ Non-coding region sequences in eukaryotic messenger RNA. Nature 263: 211–214.

    Google Scholar 

  • Rowan, R. G. & J. A. Hunt, 1991. Rates of DNA change and phyologeny from the DNA sequence of the Adh gene from five closely related species of Hawaiian Drosophila. Mol. Biol. Evol. 8: 49–70.

    Google Scholar 

  • Sanger, F., S. Nicklen & A. R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Sene, F. M. & H. L. Carson, 1977. Generic variation in Hawaiian Drosophila. IV Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawaii. Genetics 86: 187–189.

    Google Scholar 

  • Sheldon, F. H., 1987. Rates of single-copy DNA evolution in Herons. Mol. Biol. Evol. 4: 56–69.

    Google Scholar 

  • Slatkin, M., 1985. Genetic differentiation of transposable elements under mutation and unbiased gene conversion. Genetics 110: 145–158.

    Google Scholar 

  • Spieth, H. T., 1981. Drosophila heteroneura and Drosophila silverstris: Head shapes, behaviors and evolution. Evolution 35: 921–930.

    Google Scholar 

  • Thomas, R. H. & J. A. Hunt, 1991. The molecular evolution of the alcohol dehydrogenase locus and the phylogeny of Hawaiian Drosophila. Mol. Biol. Evol. 8: 687–702.

    Google Scholar 

  • Wu, C.-I. & W.-H. Li, 1985. Evidence for higher rates of substitution in rodents than in man. Proc. Natl. Acad. Sci. 82: 1741–1745.

    Google Scholar 

  • Zeletsova, E. S., R. O. Vashakidze, A. S. Krayev & M. B. Evgen'ev, 1986. Dispersed repeats in Drosophila virilis: Elements mobilized by interspecific hybridization. Chromosoma 93: 469–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezinsky, L., Humphreys, T.D. & Hunt, J.A. Evolution of the transposable element Uhu in five species of Hawaiian Drosophila . Genetica 86, 21–35 (1992). https://doi.org/10.1007/BF00133708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133708

Key words

Navigation