Skip to main content
Log in

Inhibition of tumor cell-platelet interactions and tumor metastasis by the calcium channel blocker, nimodipine

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Nimodipine, a dihydropyridine calcium channel blocker, was evaluated in vitro for its ability to inhibit platelet aggregation induced by B 16 amelanotic melanoma (B16a) and Walker 256 carcinosarcoma (W256) cells, and for its ability to inhibit platelet-enhanced B16a and W256 adhesion to rat microvascular endothelial cells. Nimodipine produced a dose-dependent inhibition of tumor-cell-induced platelet aggregation (TCIPA). Platelets enhanced tumor cell adhesion to endothelium both in the presence and absence of overt platelet aggregation. However, the greatest enhancement of adhesion occurred under aggregatory conditions. Nimodipine at a dose of 40 µg/ml inhibited platelet-enhanced adhesion to endothelium under aggregatory and nonaggregatory conditions. Nimodipine was tested in vivo for its ability to inhibit both ‘experimental’ and spontaneous metastasis. Nimodipine produced a 46 per cent inhibition of lung colony formation at a dose of 5 mg/kg body-weight. Over a dose range of 0·1–80 mg/kg, nimodipine produced a significant dose-dependent inhibition in the formation of lung metastases from a subcutaneous tumor. The in vitro results demonstrate that a dihydropyridine calcium channel blocker can inhibit tumor cell-platelet-endothelial cell interactions. The in vivo results suggest that these compounds may be a new class of antimetastatic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastida, E., Ordinas, A., and Jamieson, G. A., 1981, Idiosyncratic platelet responses to human tumor cells. Nature, 291, 661–662.

    Google Scholar 

  2. Bolger, G. T., Gengo, P. J., Luchowski, E. M., Siegel, H., Triggle, D. J., and Janis, R. A., 1982, High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochemical and Biophysical Research Communications, 104, 1604–1609.

    Google Scholar 

  3. Braunwald, E., 1982, Mechanism of action of calcium channel blocking agents. New England Journal of Medicine, 307, 1618–1627.

    Google Scholar 

  4. Detwiler, T. C., Chard, I. F., and Feinman, R. D., 1980, Evidence that calcium regulates platelet function. Thrombosis and Haemostasis, 40, 207–240.

    Google Scholar 

  5. Diglio, C. A., Grammas, P., Giacomelli, F., and Wiener, J., 1982, Primary culture of rat cerebral microvascular endothelial cells. Laboratory Investigation, 46, 544–563.

    Google Scholar 

  6. Diglio, C. A., Wolfe, D. E., and Meyers, P., 1983, Transformation of rat cerebral endothelial cells by Rous sarcoma virus. Journal of Cell Biology, 97, 15–21.

    Google Scholar 

  7. Fantone, J., Kunkel, S., and Varani, J., 1982, Inhibition of tumor cell adherence by prostaglandins. Prostaglandins and Cancer, edited by T. J. Powles, R. S. Bockman, K. V. Honn and P. Ramwell (New York: Alan R. Liss), pp. 673–677.

    Google Scholar 

  8. Flaim, S. F., and Zelis, R., 1981, Clinical use of calcium entry blockers. Federation Proceedings, Federation of American Societies for Experimental Biology, 40, 2877–2881.

    Google Scholar 

  9. Fleckenstein, A., 1977, Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annual Review of Pharmacology and Toxicology, 17, 149–166.

    Google Scholar 

  10. Gasic, G. J., Gasic, T. B., Galanti, N., Johnson, T., and Murphy, J., 1973, Platelet tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. International Journal of Cancer, 11, 704–718.

    Google Scholar 

  11. Gasic, G. J., Gasic, T. B., and Stewart, C. C., 1968, Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences, U.S.A., 61, 46–52.

    Google Scholar 

  12. Gasic, G. J., Koch, P. A. G., Hsu, B., Gasic, T. B., and Niewiarowski, S., 1976, Thrombogenic activity of mouse and human tumors: effects on platelets, coagulation and fibrinolysis, and possible significance for metastasis. Zeitschrift für Krebsforschung, 86, 263–277.

    Google Scholar 

  13. Gastpar, H., Ambrus, J., and Thurber, L. E., 1977, Study of platelet aggregation in vivo. II. Effect of bencyclane on circulating metastatic tumor cells. Journal of Medicine (Westbury, New York), 8, 53–56.

    Google Scholar 

  14. Gorman, R. R., 1979, Modulation of human platelet function by prostacyclin and thromboxane A2. Federation Proceedings, Federation of American Societies for Experimental Biology, 38, 83–88.

    Google Scholar 

  15. Gould, R. J., Murphy, K. M. M., and Snyder, S. H., 1982, [3H]Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proceedings of the National Academy of Sciences, U.S.A., 79, 3656–3660.

    Google Scholar 

  16. Hara, Y., Steiner, M., and Baldini, M. G., 1980, Characterization of the platelet aggregating activity of tumor cells. Cancer Research, 40, 1217–1222.

    Google Scholar 

  17. Honn, K. V., 1983, Inhibition of tumor cell metastasis by modulation of the vascular prostacyclin/thromboxane A2 System. Clinical & Experimental Metastasis, 1, 103–114.

    Google Scholar 

  18. Honn, K. V., Busse, W. D., and Sloane, B. F., 1983, Commentary. Prostacyclin and thromboxanes. Implications for their role in tumor cell metastasis. Biochemical Pharmacology, 32, 1–11.

    Google Scholar 

  19. Honn, K. V., Cicone, B., and Skoff, A., 1981, Prostacyclin: a potent antimetastatic agent. Science, Washington, D.C., 212, 1270–1272.

    Google Scholar 

  20. Honn, K. V., Menter, D. G., Onoda, J. M., Taylor, J. D., and Sloane, B. F., 1984, Role of prostacyclin as a natural deterrent to hematogenous tumor metastasis. Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects, edited by G. L. Nicolson and L. Milas (New York: Raven Press), pp. 361–368.

    Google Scholar 

  21. Honn, K. V., Meyer, J., Neagos, G., Henderson, T., Westley, C., and Ratanatharathorn, V., 1982, Control of tumor growth and metastasis with prostacyclin and thromboxane synthetase inhibitors: evidence for a new antitumor and antimetastatic agent (Bay g 6575). Interaction of Platelets and Tumor Cells, edited by G. A. Jamieson (New York: Alan R. Liss), pp. 295–331.

    Google Scholar 

  22. Honn, K. V., Romine, M., and Skoff, A., 1981, Prostaglandin analogs as inhibitors of tumor cell DNA synthesis. Proceedings of the Society for Experimental Biology and Medicine, 166, 562–567.

    Google Scholar 

  23. Honn, K. V., and Sloane, B. F., Prostaglandins in tumor cell metastasis. Basic Mechanisms and Clinical Treatments of Tumor Metastasis, edited by M. Torisu and Y. Yoshida (New York: Academic Press) (in the press).

  24. Jamieson, G. A., ed., 1982, Interaction of Platelets and Tumor Cells. (New York: Alan R. Liss).

    Google Scholar 

  25. Janis, R. A., and Triggle, D. J., 1983, New developments in Ca2+ channel antagonists. Journal of Medicinal Chemistry, 26, 775–785.

    Google Scholar 

  26. Kaelin, W. G., Shrivastav, S., and Jirtle, R. L., 1983, Calcium antagonists and their effect on tumor blood flow. Proceedings of the American Association for Cancer Research (Abstract), 24, 271.

    Google Scholar 

  27. Kaelin, W. G., Shrivastav, S., Shand, D. G., and Jirtle, R. L., 1982, Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Research, 42, 3944–3949.

    Google Scholar 

  28. Karpatkin, S., and Pearlstein, E., 1981, Role of platelets in tumor cell metastases. Annals of Internal Medicine, 95, 636–641.

    Google Scholar 

  29. Karpatkin, S., Smerling, A., and Pearlstein, E., 1980, Plasma requirement for the aggregation of rabbit platelets by an aggregating material derived from SV40-transformed 3T3 fibroblasts. Journal of Laboratory and Clinical Medicine, 96, 994–1001.

    Google Scholar 

  30. Lerner, W. A., Pearlstein, E., Ambrogio, C., and Karpatkin, S., 1983, A new mechanism for tumor-induced platelet aggregation. Comparison with mechanisms shared by other tumors with possible pharmacologic strategy toward prevention of metastases. International Journal of Cancer, 31, 463–469.

    Google Scholar 

  31. Levy, J. V., 1983, Calmodulin antagonist W-7 inhibits aggregation of human platelets induced by platelet activating factor. Proceedings of the Society for Experimental Biology and Medicine, 172, 393–395.

    Google Scholar 

  32. Maat, B., and Hilgard, P., 1981, Anticoagulant and experimental metastasesevaluation of antimetastatic effects in different model systems. Journal of Cancer Research and Clinical Oncology, 101, 275–283.

    Google Scholar 

  33. Maniglia, C. A., Tudor, G., Gomez, J., and Sartorelli, A. C., 1982, The effect of 2,6-bis(diethanolamino)-4-piperidinopyrimido [5,4-d]-pyrimidine (RA233) on growth, metastases and lung colony formation of B16 melanoma. Cancer Letters, 16, 253–260.

    Google Scholar 

  34. Marcum, J. M., McGill, M., Bastida, E., Ordinas, A., and Jamieson, G. A., 1980, The interaction of platelets, tumor cells, and vascular subendothelium. Journal of Laboratory and Clinical Medicine, 96, 1048–1053.

    Google Scholar 

  35. Mizuno, S., and Ishida, A., 1982, Potentiation of bleomycin cytotoxicity by membrane-interacting drugs and increased calcium ions. Biochemical and Biophysical Research Communications, 107, 1021–1027.

    Google Scholar 

  36. Mustard, J. F., Perry, D. W., Ardlie, N. G., and Packham, M. A., 1972, Preparation of suspensions of washed platelets from humans. British Journal of Haematology, 22, 193–204.

    Google Scholar 

  37. Ono, H., and Kimura, M., 1981, Effect of Ca2+-antagonistic vasodilators, diltiazem, nifedipine, perhexiline and verapamil on platelet aggregation in vitro. Arzneimittel-Forschung/Drug Research, 31, 1131–1134.

    Google Scholar 

  38. Owen, N. E., Feinberg, H., and Lebreton, G. C., 1980, Epinephrine induces Ca2+ uptake in human blood platelets. American Journal of Physiology, 239, H483-H488.

    Google Scholar 

  39. Owen, N. E., and Lebreton, G. C., 1981, Ca2+ mobilization in blood platelets as visualized by chlortetracycline fluorescence. American Journal of Physiology, 241, H613-H619.

    Google Scholar 

  40. Ribeiro, L. G. T., Brandon, T. A., Horak, J. K., Ware, J. A., Miller, R. R., and Solis, R. T., 1982, Inhibition of platelet aggregation by verapamil: quantification by in vivo and in vitro techniques. Journal of Cardiovascular Pharmacology, 4, 170–173.

    Google Scholar 

  41. Schmunk, G. A., and Lefer, A. M., 1982, Anti-aggregatory actions of calcium channel blockers in cat platelets. Research Communications in Chemical Pathology and Pharmacology, 35, 179–187.

    Google Scholar 

  42. Slater, L. M., Murray, S. L., Wetzel, M. W., Wisdom, R. M., and Duvall, E. M., 1982, Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. Journal of Clinical Investigation, 70, 1131–1134.

    Google Scholar 

  43. Sloane, B. F., Dunn, J. R., and Honn, K. V., 1981, Lysosomal cathepsin B: correlation with metastatic potential. Science, Washington, D.C., 212, 1151–1153.

    Google Scholar 

  44. Sloane, B. F., Honn, K. V., Sadler, J. G., Turner, W. A., Kimpson, J. J., and Taylor, J. D., 1982, Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Research, 42, 980–986.

    Google Scholar 

  45. Tanaka, N., Ashida, S-I, Tohgo, A., and Ogawa, H., 1982, Platelet-aggregating activities of metastasizing tumor cells. Invasion and Metastasis, 2, 289–298.

    Google Scholar 

  46. Tsuruo, T., Iida, H., Naganuma, K., Tsukagoshi, S., and Sakurai, Y., 1983, Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Research, 43, 808–813.

    Google Scholar 

  47. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y., 1982, Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Research, 42, 4730–4733.

    Google Scholar 

  48. Tsuruo, T., Iida, H., Yamashiro, M., Tsukagoshi, S., and Sakurai, Y., 1982, Enhancement of vincristine- and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochemical Pharmacology, 31, 3138–3140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honn, K.V., Onoda, J.M., Diglio, C.A. et al. Inhibition of tumor cell-platelet interactions and tumor metastasis by the calcium channel blocker, nimodipine. Clin Exp Metast 2, 61–72 (1984). https://doi.org/10.1007/BF00132307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132307

Keywords

Navigation