Skip to main content
Log in

Putting the heat on sex determination

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Sex determination and differentiation are inherently fascinating to both layperson and geneticist. Major advances have accelerated interest in the molecular genetic events mediating these processes in nematodes, flies, mice and humans. Far less attention has been paid to those organisms, particularly reptiles, where sex is determined by environmental cues. However, recent experimental evidence suggests that the two modes of sex determination may not only share common genetic elements, but may also be regulated by similar mechanisms. We argue that the ability to manipulate sex by temperature provides a particularly suitable model for exploring the molecular basis of this fundamental biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, B. S., 1989. Sex in flies: the splice of life. Nature 340: 521–524.

    Google Scholar 

  • Baker, B. S., K. C., Burtis, T. J., Goralski, W., Mattox & R. N., Nagoshi, 1989. Molecular genetic aspects of sex determination in Drosophila melanogaster. Genome 31: 638–645.

    Google Scholar 

  • Bell, L. R., E. M., Maine, P., Schedl & T. W., Cline, 1988. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similiarity to RNA binding proteins. Cell 55: 1037–1046.

    Google Scholar 

  • Belote, J. M., 1989. The control of sexual development in Drosophila melanogaster: genetic and molecular analysis of a genetic regulatory hierarchy — a mini review. Gene 82: 161–167.

    Google Scholar 

  • Berta, P., J. R., Hawkins, A. H., Sinclair, A., Taylor, B., Griffiths, P. N., Goodfellow & M., Fellows, 1990. Genetic evidence equating SRY and the testis determining factor. Nature 348: 448–450.

    Google Scholar 

  • Bourne, H. R., D. A., Sanders & F., McCormick, 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.

    Google Scholar 

  • Bull, J. J., 1980. Sex determination in reptiles. Quart. Rev. Biol. 55: 3–21.

    Google Scholar 

  • Bull, J. J. & R. C., Vogt, 1979. Temperature-dependent sex determination in turtles. Science 206: 1186–1188.

    Google Scholar 

  • Bull, J. J., D. M., Hillis & S., O'Steen, 1988. Mammalian ZFY sequences exist in reptiles regardless of sex-determining mechanism. Science 242: 567–569.

    Google Scholar 

  • Bull, J. J., R. G., Moon & J. M., Legler, 1974. Male heterogamety in kinosternid turtles (genus Stavrotypus). Cytogenet. Cell. Genet. 13: 419–425.

    Google Scholar 

  • Burgoyne, P. S., 1989. Thumbs down for zinc finger? Nature 342: 860–862.

    Google Scholar 

  • Cattanach, B. M., 1961. XXY mice. Genet. Res. 2: 156–158.

    Google Scholar 

  • Cattanach, B. M., 1962. XO mice. Genet. Res. 3: 487–490.

    Google Scholar 

  • Charnier, M., 1966. Action de la temperature sur la sex-ratio chez l'embryon d'Agama agama (Agamidae, Lacertilien). Soc. Biol. Quest Af. 160: 620–622.

    Google Scholar 

  • Cline, T. W., 1988. Evidence that sisterless-a and Sisterless-b are two of several discrete ‘numerator elements’ of the X/A determination signal in Drosophila that switch Sxl between two alternative stable expression states. Genetics 119: 829–862.

    Google Scholar 

  • Deeming, D. C. & M. W. J., Ferguson, 1988. Environmental regulation of sex determination in reptiles. Phil. Trans. R. Soc. Lond. B 322: 19–39.

    Google Scholar 

  • Deeming, D. C. & M. W. J., Ferguson, 1989. The mechanism of temperature dependent sex determination in crocodilians: a hypothesis. Amer. Zool. 29: 973–985.

    Google Scholar 

  • Deeming, D. C. & M. W. J., Ferguson, 1990. Morphometric analysis of embryonic development in Alligator mississippiensis, Crocodylus johnstoni and Crocodylus porosus. J. Zool. 221: 419–439.

    Google Scholar 

  • Demas, S., M., Duronslet, S., Wachtel, C., Caillouet & D., Nakamura, 1990. Sex-specific DNA in Reptiles with Temperature Sex Determination. J. Exp. Zool. 253: 319–324.

    Google Scholar 

  • Dreyfuss, G., L., Philipson & I. W., Mattaj, 1988, Ribonucleoprotein particles in cellular processes. J. Cell. Biol. 106: 1419–1425.

    Google Scholar 

  • Eicher, E. M. & L. L., Washburn, 1986. Genetic control of primary sex determination in mice. Ann. Rev. Genet. 20: 327–360.

    Google Scholar 

  • Ferguson, M. W. J. & T., Joanen, 1983. Temperature-dependent sex determination in Alligator mississippiensis. J. Zool., London 200: 143–177.

    Google Scholar 

  • Gubbay, J., J., Collignon, P., Koopman, B., Capel, A., Economou, A., Munsterberg, N., Vivian, P.N., Goodfellow & R., Lovell-Badge, 1990. A gene mapping to the sex determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250.

    Google Scholar 

  • Harry, J. L. & C. J., Limpus, 1989. Low temperature protection of marine turtle eggs during long distance relocation. Aust. Wildl. Res. 16: 312–320.

    Google Scholar 

  • Harry, J. L., K. L., Williams & D. A., Briscoe, 1990. Sex determination in loggerhead turtles: differential expression of two hnRNP proteins. Development 109: 305–312.

    Google Scholar 

  • Harry, J. L., 1991. An Investigation of the Mechanism of temperature dependent determination in the turtle Caretta caretta, Linnaeus 1758 in Ph.D. Thesis, Macquarie University, Sydney, Australia.

  • Harry, J. L. & K. L., Williams, 1991. Differential Growth of Male and Female Urinogenital Systems of Caretta caretta, Within the Sex-Determining Period. J. Exp. Zool. 258: 204–211.

    Google Scholar 

  • Hodgkin, J., 1987. Sex determination and dosage compensation in Caenorhabditis elegans. Ann. Rev. Genet. 21: 133–154.

    Google Scholar 

  • Hodgkin, J., 1989. Drosophila sex determination: a cascade of regulated splicing. Cell 56: 905–906.

    Google Scholar 

  • Hodgkin, J., 1990. Sex determination compared in Drosophila and Caenorhabditis. Nature 344: 721–728.

    Google Scholar 

  • Jacobs, P.A. & J.A., Strong, 1959. A case of human intersexuality having a possible XXY sex determining mechanism. Nature 183: 302–303.

    Google Scholar 

  • Jones, K. W. & L., Singh, 1981. Conserved repeated DNA sequences in vertebrate sex chromosomes. Hum. Genet. 58: 46–53.

    Google Scholar 

  • Joss, J. M. P., 1989. Gonodal development and differentiation in Alligator mississippiensis at male and female producing incubation temperatures. J. Zool. 218: 679–687.

    Google Scholar 

  • Kent, M. G., K. O., Elliston, W., Schroeder, K. S., Guise & S., Wachtel, 1988. Conserved repetitive DNA sequences (Bkm) in normal equine males and sex-reversed females detected by in situ hybridization. Cytogenet. Cell Genet. 48: 99–102.

    Google Scholar 

  • King, M., 1977. The evolution of sex chromosomes in lizards, pp. 55–60, in Evolution and Reproduction, edited by J., Calaby & H., Tyndale-Biscoe. Aust. Acad. Sci., Canberra, Australia.

    Google Scholar 

  • Koopman, P., J., Gubbay, J., Collignon & R., Lovell-Badge, 1989. Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342: 940–942.

    Google Scholar 

  • Koopman, P., J., Gubbay, N., Vivian, P.N., Goodfellow & R., Lovell-Badge, 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351: 117–121.

    Google Scholar 

  • Levison, G., J. L., Marsh, J. T., Epplen & G. A., Gutman, 1985. Cross-hybridizing snake satellite, Drosophila and mouse DNA sequences may have arisen independently. Mol. Biol. Evol. 2: 494–504.

    Google Scholar 

  • Limpus, C. J., P. C., Reed & J. D., Miller, 1985. Temperature-dependent sex determination in Queensland sea turtles: intraspecific variation in Caretta caretta, pp. 343–351 in Biology of Australasian Frogs and Reptiles, edited by G., Grigg, R., Shine and H., Ehmann. Royal Zoological Society of New South Wales, Sydney, Australia.

    Google Scholar 

  • Lin, Y-S. & M. R., Green, 1989. Similarities between prokaryotic and eukaryotic cyclic AMP-responsive promoter elements. Nature 340: 656–659.

    Google Scholar 

  • Madl, J. E. & R. K., Herman, 1979. Polyploids and sex determination in Caenorhabditis elegans. Genetics 93: 393–402.

    Google Scholar 

  • Mardon, G., R., Mosher, C. M., Disteche, Y., Nishioka, A., McLaren & D. C., Page, 1989. Duplication, deletion and polymorphism in the sex-determining region of the mouse Y chromosome. Science 243: 78–83.

    Google Scholar 

  • Mattaj, I.W., 1989. A binding consensus: RNA-protein interactions in splicing, sRNPs, and sex. Cell 57: 1–3.

    Google Scholar 

  • Mclaren, A., 1990. What makes a man a man? Nature 346: 216–217.

    Google Scholar 

  • McLaren, A., E., Simpson, K., Tomonari, P., Chandler & H., Hogg, 1984. Male sexual differentiation in mice lacking H-Y antigen. Nature 312: 552–555.

    Google Scholar 

  • McLaren, A., 1988. Sex determination in mammals. Trends Genet. 4: 153–157.

    Google Scholar 

  • Miller, L. M., J. D., Plenefisch, L.P., Casson & B.J., Meyer, 1988. xol-1: A gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell 55: 167–183.

    Google Scholar 

  • Miller, J. D. & C. J., Limpus, 1981. Incubation period and sexual differentiation in the green turtle, Chelonia mydas, pp. 66–73 in Proc. Melbourne Herpesvirus Symposium, edited by C. B., Banks and A. A., Martin. Zoological Board of Victoria, Melbourne, Australia.

    Google Scholar 

  • Minoo, P., W., Sullivan, L. R., Solomon, T. E., Martin, D. O., Toft & R. E., Scott, 1990. Loss of proliferative potential during terminal differentiation coincides with the decreased abundance of a subset of heterogeneous ribonuclear proteins. J. Cell. Biol. 109: 1937–1946.

    Google Scholar 

  • Nagamine, C. M., K., Chan, C. A., Kozak & Y-F., Lau, 1989. Chromosome mapping and expression of a putative testisdetermining gene in mouse. Science 243: 80–83.

    Google Scholar 

  • Nusbaum, C. & B. J., Meyer, 1989. The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals. Genetics 122: 579–593.

    Google Scholar 

  • Ohno, S., 1976. Major regulatory genes for mammalian sexual development. Cell 7: 315–321.

    Google Scholar 

  • Page, D. C., R., Mosher, E. M., Simpson, E. M. C., Fisher, G., Mardon, J., Pollack, B., McGillivray, A.de la, Chapelle & L.G., Brown, 1987. The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51: 1091–1104.

    Google Scholar 

  • Salz, H. Z., E. M., Maine, L. N., Keyes, M. E., Samuels, T.W., Cline & P., Schedl, 1989. The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, and sex-specific RNAs suggesting multiple modes of regulation. Genes Dev. 3: 708–719.

    Google Scholar 

  • Shaw, G., M. B., Renfree & R.V., Short, 1990. Primany genetic control of sexual differentiation in marsupials. Aust. J. Zool. 37: 443–450.

    Google Scholar 

  • Simpson, E., A., McLaren, P., Chandler & K., Tomonari, 1984. Expression of H-Y antigen by female mice carrying S X r. Transplantation 37: 17–21.

    Google Scholar 

  • Sinclair, A. H., J. W., Foster, J. A., Spencer, D. C., Page, M., Palmer, P. N., Goodfellow & J. A. M., Graves, 1988. Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336: 780–783.

    Google Scholar 

  • Singh, L. & K. W., Jones, 1982. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell 28: 205–216.

    Google Scholar 

  • Swanson, M. S. & G., Dreyfuss, 1988. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol. Cell. Biol. 8: 2237–2241.

    Google Scholar 

  • Vogt, R. C., J. J., Bull, C. J., McCoy & T.W., Houseal, 1982. Incubation temperature influences sex determination in Kinosternid furtles. Copeia 480–482.

  • Wachtel, S. S., S., Ohno, G. C., Koo & E. A., Boyse, 1975. Possible role for H-Y antigen in the primary determination of sex. Nature 257: 235–236.

    Google Scholar 

  • Wagner, E., 1980. Temperature-dependent sex determination in a gekkoe lizard. Quart. Rev. Biol. 55: 21.

    Google Scholar 

  • Yntema, C. L., 1979. Temperature levels and periods of sex determination during incubation of eggs of Chelydra serpentina. J. Morphol. 159: 17–28.

    Google Scholar 

  • Yntema, C. L. & N., Mrosovsky, 1980. Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica 36: 33–36.

    Google Scholar 

  • Zaborski, P., M., Dorizzi & C., Pieau, 1988. Temperature-dependent gonadal differentiation in the turtle Emys orbicularis: concordance between sexual phenotype and serological H-Y antigen expression at threshold temperature. Differentiation 38: 17–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harry, J.L., Briscoe, D.A. & Williams, K.L. Putting the heat on sex determination. Genetica 87, 1–6 (1992). https://doi.org/10.1007/BF00128767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128767

Key words

Navigation