Skip to main content
Log in

Effect of propionyl-L-carnitine on human endothelial cells

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no significant effect on the observed decline in various parameters of cell viability, e.g., cell detachment, release of lactate dehydrogenase, and the rate of protein synthesis. Propionyl-L-carnitine progressively decreased the fluorescence intensity in fura-2-loaded endothelial cells obtained during excitation at 340 nm. A similar effect was observed with propionyl-L-carnitine and acetyl-L-carnitine, but not with L-carnitine and D-carnitine. These results suggest that propionyl-L-carnitine and acetyl-L-carnitine decrease the cytoplasmic calcium level in endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thorgeirsson G. Structure and morphological features of vascular endothelium. In: Cryer A. ed. Biochemical interactions at the endothelium. Amsterdam: Elsevier Science Publishers, 1983:5–39.

    Google Scholar 

  2. Gimbrone MAJr. Vascular endothelium in hemostasis and thrombosis. Edinburgh: Churchill Livingstone, 1986.

    Google Scholar 

  3. Furchgott RF. The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 1984;24:175–197.

    Article  CAS  Google Scholar 

  4. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986;163:740–745.

    Article  PubMed  CAS  Google Scholar 

  5. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315:1046–1051.

    PubMed  CAS  Google Scholar 

  6. Bossaller C, Habib GB, Yamamoto H, et al. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 1987; 79:170–174.

    Article  PubMed  CAS  Google Scholar 

  7. Bevilacqua MP, Pober JS, Wheeler ME, et al. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol 1985;121: 393–403.

    Google Scholar 

  8. Sacks T, Moldow CF, Craddock PR, et al. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 1978;61:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  9. Harlan JM, Killen PD, Harker LA, et al. Neutrophil-mediated endothelial injury in vitro. Mechanisms of cell detachment. J Clin Invest 1978;61:1394–1403.

    Article  Google Scholar 

  10. Harlan JM, Levine JD, Callahan KS, et al. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest 1984;73:706–713.

    Article  PubMed  CAS  Google Scholar 

  11. More DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983;24:1070–1076.

    Google Scholar 

  12. Evensen SA, Galdal KS, Nilsen E. LDL-induced cytotoxicity and its inhibition by anti-oxidant treatment in cultured human endothelial cells and fibroblasts. Atherosclerosis 1983;49:23–30.

    Article  PubMed  CAS  Google Scholar 

  13. Cines DB, Lyss AP, Bina M, et al. Fc and C3 receptors induced by herpes simplex virus on cultured human endothelial cells. J Clin Invest 1982;69:123–128.

    Article  PubMed  CAS  Google Scholar 

  14. Joris I, Majno G. Endothelial changes induced by arterial spasm. Am J Pathol 1981;102:346–358.

    PubMed  CAS  Google Scholar 

  15. Cines DB, Lyss AP, Reeber M, et al. Presence of complement-fixing anti-endothelial cell antibodies in systemic lupus erythematosus. J Clin Invest 1984;73:611–625.

    Article  PubMed  CAS  Google Scholar 

  16. Jaffe EA, Grulich J, Weksler BB, et al. Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J Biol Chem 1987;262:8557–8565.

    PubMed  CAS  Google Scholar 

  17. Hallam TJ, Pearson JD, Needham LA. Thrombin-stimulated elevation of human endothelial-cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J 1988;251:243–249.

    PubMed  CAS  Google Scholar 

  18. Lückoff A, Busse R. Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 1986;126:414–420.

    Article  Google Scholar 

  19. Emeis JJ. Mechanisms involved in short-term changes in blood levels of t-PA. In: Kluft C, ed. Tissue-type plasminogen activator (t-PA): Physiologica and clinical aspects, Vol II. Boca Raton, FL: CRC Press, 1988:21–35.

    Google Scholar 

  20. Cheung JY, Bonventre JV, Malis CD, et al. Calcium and ischemic injury. N Engl J Med 1986;314:1670–1676.

    PubMed  CAS  Google Scholar 

  21. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.

    PubMed  CAS  Google Scholar 

  22. Redgrave TG, Roberts DCK, West CE. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem 1974;65:42–49.

    Article  Google Scholar 

  23. VanHinsbergh VWM, Scheffer MA, Havekes L, et al. Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochim Biophys Acta 1986; 878:49–64.

    PubMed  Google Scholar 

  24. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunological criteria. J Clin Invest 1973;52:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  25. VanHinsbergh VWM, Havekes L, Emeis JJ, et al. Low density lipoprotein metabolism by endothelial cells from human umbilical cord arteries and veins. Arteriosclerosis 1983;3:547–559.

    PubMed  Google Scholar 

  26. VanHinsbergh VWM, Mommaas-Kienhuis AM, Weinstein R, et al. Propagation and morphologic phenotypes of human umbilical cord artery endothelial cells. Eur J Cell Biol 1986;42:101–110.

    PubMed  Google Scholar 

  27. Maciag T, Cerundolo J, Ilsley S, et al. An endothelial cell growth factor from bovine hypothalamus: Identification and partial characterization. Proc Natl Acad Sci USA 1979; 76:5674–5678.

    Article  PubMed  CAS  Google Scholar 

  28. VanHinsbergh VWM. Effect of cyclandelate on prostacyclin release and cytosolic free calcium concentrations in human endothelial cells. Drugs (Suppl 2) 1987;33:60–66.

    Article  PubMed  Google Scholar 

  29. Demacker PNM, Vos-Janssen HE, Van't Laar A, et al. A descriptive study of the different electrophoretic patterns on agarose of human serum very low density lipoproteins. Clin Chem 1978;24:1439–1444.

    PubMed  CAS  Google Scholar 

  30. Lowry O, Rosebrough N, Farr A, et al. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193:265–275.

    PubMed  CAS  Google Scholar 

  31. Bieber LL. Carnitine. Ann Rev Biochem 1988;57:261–283.

    Article  PubMed  CAS  Google Scholar 

  32. Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Ann Rev Nutr 1986;6:41–66.

    Article  CAS  Google Scholar 

  33. Hülsmann WC, Dubelaar ML. Aspects of fatty acid metabolism in vascular endothelial cells. Biochemie 1988;70: 681–686.

    Article  Google Scholar 

  34. VanHinsbergh VWM, Emeis JJ, Havekes L. Interaction of lipoproteins with cultured endothelial cells. In: Thilo-Korner DGS, Freshney RI, eds. The endothelial cell—A pluripotent control cell of the vessel wall. Basel: Karger, 1983:99–112.

    Google Scholar 

  35. Rotrosen D, Gallin JI. Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers. J Cell Biol 1986;103:2379–2387.

    Article  PubMed  CAS  Google Scholar 

  36. DeClerck F, DeBrabander M, Neels H, et al. Direct evidence for the contractile capacity of endothelial cells. Thromb Res 1981;23:505–520.

    Article  PubMed  Google Scholar 

  37. Langeler EG, Van Hinsbergh VWM. Histamine and thrombin increase LDL passage through human arterial endothelial cells. Circulation 1987;76 (Suppl. IV):IV54.

  38. Jacob R, Merritt JE, Hallam TJ, et al. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 1988;335:40–45.

    Article  PubMed  CAS  Google Scholar 

  39. Almers W, Neher N. The Ca2+ signal from fura-2 loaded mast cells depends strongly on the method of dye loading. JEBS Lett 1985;192:13–18.

    CAS  Google Scholar 

  40. Malgaroli A, Milani D, Meldolesi J, et al. Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J Cell Biol 1987;105:2145–2155.

    Article  PubMed  CAS  Google Scholar 

  41. Steinberg SF, Bilezikian JP, Al-Awqati Q. Fura-2 fluorescence is localized to mitochondria in endothelial cells. Am J Physiol 1987;253:C744-C747.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Hinsbergh, V.W.M., Scheffer, M.A. Effect of propionyl-L-carnitine on human endothelial cells. Cardiovasc Drug Ther 5, 97–105 (1991). https://doi.org/10.1007/BF00128248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128248

Key Words

Navigation