Skip to main content
Log in

Characteristic features of the sonicated DNA of Agama agama agama L. (Reptilia, Agamidae) on hydroxyapatite columns, using mouse DNA as a reference

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Hydroxyapatite column chromatography has been used to study some properties of the extensively sheared DNA of the Rainbow lizard, Agama agama agama. Reassociation studies show that the genome has a Cot1/2 of 370. Approximately 15% of the genome is highly repetitive in nature. This repetitive fraction is resolved into thermally stable and less stable fractions. The stable fraction has a base composition of 47% GC, higher than the 40.2% GC for the native DNA. This stable fraction is believed to be of recent origin.

Chromatography of the total DNA of the lizard with linear gradients of phosphate buffer containing 1 M urea resolves it into two components which were shown by thermal fractionation, also in the presence of 1 M urea, to vary in base composition. This behaviour may be characteristic of reptilian genomes and may be used as a basis for studying the structural organisation of the reptilian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adegoke J. A., 1984. The base compositions of repeated and non-repeated DNA sequences of Chinese hamster (CHO) cells. Nig. J. Genet. 5: 27–38.

    Google Scholar 

  • Adegoke J. A., 1988. Studies on the chromosomes of the Rainbow lizard Agama agama agama (L.) with notes on polyploidy in the spermatocytes. Cytologia 53: 233–239.

    Google Scholar 

  • Arnason U., Hoglun M. & Widegren B., 1984. Conservation of highly repetitive DNA in cetaceans. Chromosoma (Berl.) 89: 238–242.

    Google Scholar 

  • Arnason U. & Widegren B., 1986. Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA. Mol. Biol. Evol. 3 (4): 356–365.

    Google Scholar 

  • Bernardi G., 1969a. Chromatography of nucleic acids on hydroxyapatile I. Chromatography of native DNA. Biochim. Biophys. Acta. 174: 423–434.

    Google Scholar 

  • Bernardi G., 1969b. Chromatography of nucleic acids on hydroxyapatite II. Chromatography of denatured DNA. Biochim. Biophys. Acta 174: 435–448.

    Google Scholar 

  • Bernardi, G., 1971. Chromatography of nucleic acids on hydroxyapatite columns. In: Methods in Enzymology Vol. XXI; pp 95–139. Eds. L. Grossman and K. Moldave.

  • Bostock, C. J., 1972. Repititious DNA. In: Advances in Cell Biology Vol. 2, pp. 153–223-Eds. D. M. Prescott, L. Goldstein and E. McConkey.

  • Britten R. J. & Kohne D. E., 1968. Repeated sequences in DNA. Science 161: 529–540.

    Google Scholar 

  • Britten, R. J., 1972. DNA sequences interspersion and speculation about evolution. In: Evolution in Genetic Systems. pp 80–94. Ed. H. H. Smith.

  • Britten, R. J., Graham, D. E. & Neufeld, B. R., 1974. Analysis of repeating DNA sequences by reassociation. In: Methods in Enzymology Vol. 29E pp. 363–418. Eds. L. Grossman and K. Moldave.

  • Brown J. E. & Jones K. W., 1972. Localisation of satellite DNA in the microchromosomes of the Japanese quail by insitu hybridisation. Chromosoma (Berl.) 38: 313–318.

    Google Scholar 

  • Comings D. E. & Mattoccia E., 1972. Evidence that heavy shoulder DNA may be localised to the microchromosomes of birds. Exp. Cell Res. 70: 256–269.

    Google Scholar 

  • Comings D. E., Avelino E. & Becak W., 1973. Heavy shoulder DNA in snakes. Cytogenet. Cell Genet. 12: 2–7.

    Google Scholar 

  • Corneo G., Zardi L. & Polli E., 1970. Elution of mammalian nuclear satellite DNA's on methylated albumin kieselguhr and hydroxyapatite chromatographic columns. Biochim. Biophys. Acta. 217: 249–258.

    Google Scholar 

  • Davidson E. H., Galau G. A., Angerer R. C. & Britten R. J., 1975. Comparative aspects of DNA organisation in metazoa. Chromosoma (Berl.) 51: 253–259.

    Google Scholar 

  • Epplen J. T., Diedrich U., Wagenmann M., Schmidtke J. & Engel W., 1979. Contrasting DNA sequence organisation patterns in Sauropsidian genomes. Chromosoma (Berl.) 75: 199–214.

    Google Scholar 

  • Harris, V. A., 1963. The Anatomy of the Rainbow lizard. Hutehinson Publishers.

  • Kiger J. A. & Sinsheimer R. L., 1969. Vegetative lambda DNA IV: Fractionation of replicating lambda DNA on benzoylated-naphthoylated DEAE-cellulose. J. Mol. Biol. 40: 467–490.

    Google Scholar 

  • Mandel, M. & Mamur, J., 1968. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. In: Methods in Enzymology Vol. XIIB. pp. 195–206. Eds. L. Grossman and K. Moldave.

  • Marmur J. & Doty P., 1962. The base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109–118.

    Google Scholar 

  • McCallum M. & Walker P. M. B., 1967. Hydroxyapatite fractionation procedures in the study of the mammalian genome. Biochem. J. 105: 163–169.

    Google Scholar 

  • Miyazawa Y. & ThomasJr. C. A., 1965. Nucleotide composition of short segments of DNA molecules. J. Mol. Biol. 11: 223–237.

    Google Scholar 

  • Olmo E. & Odierna G., 1977. Base composition of DNA from some reptiles (1). J. exp. zool. 199: 143–148.

    Google Scholar 

  • Olmo E., Stingo V., Odierna G. & Cobror O., 1981. Variations in repetitive DNA and evolution in reptiles. Comp. Biochem. Physiol. 69B: 687–691.

    Google Scholar 

  • Olmo E., 1981. Evolution of genome size and DNA base composition in reptiles. Genetica 57: 39–50.

    Google Scholar 

  • Olmo E., Odierna G., Capriglione T. & Cobror O., 1985. Different trends in the variations of the main genomic components in turtles and scaly-reptiles. Comp. Biochem. Physiol. 80B(3): 441–446.

    Google Scholar 

  • Reed N., 1970. Fractionation of rat repeated sequences according to thermal stability. Carnegie Inst. Wash. Year Book 68: 386–388.

    Google Scholar 

  • Rice, N. R., 1972. Change in repeated DNA in evolution. In: Evolution of Genetic Systems pp. 44–79. Ed. H. H. Smith.

  • Singh L., Purdom I. F. & Jones K. W., 1976. The chromosomal localisation of satellite DNA in Pytas mucosus (Ophidia, Colubridae). Chromosoma (Berl.) 57: 177–184.

    Google Scholar 

  • Stefos K. & Arrighi F. E., 1974. Repetitive DNA of Gallus domesticus and its cytological locations. Exp. Cell Res. 83: 9–14.

    Google Scholar 

  • Votavova H., Sponar J. & Sormova Z., 1970. Isolation and properties of rapidly renaturing fractions of DNA from calf tissues. Eur. J. Biochem. 12: 208–216.

    Google Scholar 

  • Walker P. M. B. & McLaren A., 1965. Fractionation of mouse deoxyribonucleic acid on hydroxyapatite. Nature (Lond.) 208: 1175–1179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegoke, J.A., Ighavini, B.O. & Onuigbo, R.O. Characteristic features of the sonicated DNA of Agama agama agama L. (Reptilia, Agamidae) on hydroxyapatite columns, using mouse DNA as a reference. Genetica 83, 171–180 (1991). https://doi.org/10.1007/BF00126222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126222

Keywords

Navigation