Skip to main content
Log in

Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Recent studies by Wackett and co-workers have shown that cytochrome P450cam is capable of reductively dehalogenating hexachloroethane at a significant rate, but that no appreciable dehalogenation of 1,1,1-trichloroethane is observed. A growing body of evidence indicates that differences in intrinsic reactivity can not completely explain this observation. We therefore explored the possible role of differences in preferred binding orientation and in active-site mobility. A detailed analysis of molecular dynamics trajectories with each of these substrates bound at the active site of P450cam is presented. While the dynamics and overall time-average structure calculated for the protein are similar in the two trajectories, the two substrates behave quite differently. The smaller substrate, 1,1,1-trichloroethane, is significantly more mobile than hexachloroethane and has a preferred orientation in which the substituted carbon is generally far from the heme iron. In contrast, for hexachloroethane, one of the chlorine atoms is nearly always in van der Waals contact with the heme iron, which should favor the initial electron transfer step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riley, R.G., Zachara, J.M. and Wobber, F.J., Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research, Report no. DE92-014826, U.S. Department of Energy, 1992.

  2. Guengerich, F.P., J. Biol. Chem., 266 (1991) 10019.

    Google Scholar 

  3. Walsh, C., Enzymatic Reaction Mechanisms, Freeman, San Francisco, CA, 1979.

    Google Scholar 

  4. Ortiz de Montellano, P.R., In Ortiz de Montellano, P.R. (Ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, Plenum, New York, NY, 1986, pp. 217–271.

    Google Scholar 

  5. Nebert, D.W. and Gonzales, F.J., Annu. Rev. Biochem., 56 (1987) 945.

    Google Scholar 

  6. Macdonald, T.L., Crit. Rev. Toxicol., 11 (1983) 85.

    Google Scholar 

  7. Anders, M.W. and Pohl, L.R., In Anders, M.W. (Ed.) Bioactivation of Foreign Compounds, Academic Press, Orlando, FL, 1985, pp. 283–315.

    Google Scholar 

  8. Castro, C.E., Wade, B.S. and Belser, N.O., Biochemistry, 24 (1985) 204.

    Google Scholar 

  9. Castro, C.E., Yokoyama, W. and Belser, N.O., Environ. Toxicol. Chem., 8 (1989) 13.

    Google Scholar 

  10. Lam, T. and Vilker, V.L., Biotechnol. Bioeng., 24 (1987) 151.

    Google Scholar 

  11. Miller, R.E. and Guengerich, F.P., Biochemistry, 21 (1982) 1090.

    Google Scholar 

  12. Miller, R.E. and Guengerich, F.P., Cancer Res., 43 (1983) 1145.

    Google Scholar 

  13. Vilker, V.L. and Khan, F., Biotechnol. Prog., 5 (1989) 70.

    Google Scholar 

  14. Wackett, L.P., Logan, M.S.P. and Bloeki, F.A., Biodegradation, 3 (1992) 19.

    Google Scholar 

  15. Logan, M.S.P., Newman, L.M., Schanke, C.A. and Wackett, L.P., Biodegradation, 4 (1993) 39.

    Google Scholar 

  16. Sligar, S.G. and Murray, R.I., In Ortiz de Montellano, P.R. (Ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, Plenum, New York, NY, 1986, pp. 429–503.

    Google Scholar 

  17. Poulos, T.L. and Raag, R., FASEB J., 6 (1992) 674.

    Google Scholar 

  18. Paulsen, M.D. and Ornstein, R.L., J. Comput.-Aided Mol. Design, 6 (1992) 449.

    Google Scholar 

  19. Paulsen, M.D. and Ornstein, R.L., Protein Eng., 6 (1993) 359.

    Google Scholar 

  20. Filipovic, D., Paulsen, M.D., Loida, P., Ornstein, R.L. and Sligar, S.G., Biochem. Biophys. Res. Commun., 189 (1992) 488.

    Google Scholar 

  21. Fruetel, J.A., Collins, J.R., Camper, D.L., Loew, G.H. and Ortiz de Montellano, P.R., J. Am. Chem. Soc., 114 (1992) 6987.

    Google Scholar 

  22. Ortiz de Montellano, P.R., Fruetel, J.A., Collins, J.R., Camper, D.L. and Loew, G.H., J. Am. Chem. Soc., 113 (1991) 3195.

    Google Scholar 

  23. Collins, J.R., Camper, D.L. and Loew, G.H., J. Am. Chem. Soc., 113 (1991) 2736.

    Google Scholar 

  24. Jones, J.P., Trager, W.F. and Carlson, T.J., J. Am. Chem. Soc., 115 (1993) 381.

    Google Scholar 

  25. Sligar, S.G., Filipovic, D. and Stayton, P.S., Methods Enzymol., 206 (1991) 31.

    Google Scholar 

  26. Paulsen, M.D., Filipovic, D., Sligar, S.G. and Ornstein, R.L., Protein Sci., 2 (1993) 357.

    Google Scholar 

  27. Loida, P.J. and Sligar, S.G., Protein Eng., 6 (1993) 207.

    Google Scholar 

  28. Poulos, T.L., Finzel, B.C. and Howard, A.J., J. Mol. Biol., 195 (1987) 687.

    Google Scholar 

  29. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  30. Guenot, J. and Kollman, P.A., Protein Sci., 1 (1992) 1185.

    Google Scholar 

  31. Steinbach, P.J., Loncharich, R.J. and Brooks, B.R., Chem. Phys., 158 (1991) 383.

    Google Scholar 

  32. DiPrimo, C., Hui Bon Hua, G., Douzou, P. and Sligar, S.G., Eur. J. Biochem., 193 (1990) 383.

    Google Scholar 

  33. Bass, M.B., Hopkins, D.F., Jaquyash, W.A.N. and Ornstein, R.L., Protein Struct. Funct. Genet., 12 (1992) 266.

    Google Scholar 

  34. Arnold, G.E. and Ornstein, R.L., Protein Struct. Funct. Genet., 18 (1994) 1.

    Google Scholar 

  35. Hagler, A.T., In Hruby, V.J. and Meienhofer, J. (Eds.) The Peptides, Academic Press, New York, NY, 1985, pp. 213–299.

    Google Scholar 

  36. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Protein Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  37. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 56th ed., CRC Press, Boca Raton, FL, 1975, p.E64.

    Google Scholar 

  38. Paulsen, M.D. and Ornstein, R.L., Protein Struct. Funct. Genet., 11 (1991) 184.

    Google Scholar 

  39. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  40. Bass, M.B., Paulsen, M.D. and Ornstein, R.L., Protein Struct. Funct. Genet., 13 (1992) 26.

    Google Scholar 

  41. Atkins, W.M. and Sligar, S.G., J. Am. Chem. Soc., 109 (1987) 3754.

    Google Scholar 

  42. Fisher, M.T. and Sligar, S.G., J. Am. Chem. Soc., 107 (1985) 5018.

    Google Scholar 

  43. Wade, R.C., J. Comput.-Aided Mol. Design, 4 (1990) 199.

    Google Scholar 

  44. Raag, R. and Poulos, T.L., Biochemistry, 28 (1989) 917.

    Google Scholar 

  45. Raag, R. and Poulos, T.L., Biochemistry, 30 (1991) 2674.

    Google Scholar 

  46. Paulsen, M.D., Bass, M.B. and Ornstein, R.L., J. Biomol. Struct. Dyn., 9 (1991) 187.

    Google Scholar 

  47. Gantzer, C.J. and Wackett, L.P., Environ. Sci. Technol., 25 (1991) 715.

    Google Scholar 

  48. Schanke, C.A. and Wackett, L.P., Environ. Sci. Technol., 26 (1992) 830.

    Google Scholar 

  49. Luke, B.T., Loew, G.H. and McLean, A.D., J. Am. Chem. Soc., 110 (1988) 3396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulsen, M.D., Ornstein, R.L. Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam. J Computer-Aided Mol Des 8, 389–404 (1994). https://doi.org/10.1007/BF00125374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125374

Key words

Navigation